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A The Bank’s Problem

A.1 Baseline: First-Order Conditions

Substituting d; = l; — e; into equation (??) and writing dG(e11) explicitly turn the
objective into:
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where ;441 = w is the stochastic discount factor and ¢;,; = T =~ Q; is the

shield of limited liability. Note that we expressed €}, ; from (Rt ot o ) Li—RI(l; — e;) =
0 to get the lower limit of the integral.
Append the Lagrangian multiplier x1; to the constraint e; > vl; and xo; to the constraint

l; > 0. Conditional on the optimal choice of o, the first-order conditions are:
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X1t (er — vely) = 0,
Xatl = 0,

et — el > 0,

Iy >0,

X1t = 0,

X2t = 0,

We are using the Leibniz integral rule above to find the partial derivatives of the profit
function. Note that the first term is zero in the differentiation because the upper limit of
the integral does not depend on any of the choice variables.

Next, express the integrals in the first-order conditions above using the erf function,
wherever possible. Note that in order to make the next expressions more neat we omit the
stochastic discount factor and the expectation operator from consideration. We include them

in the final exposition.
8 .
Work on FTR

0 € 1 _ (1 +9)?
/ 8_[15 ((Rf_;’_l + O-ttQ_+:> lt — Rf (lt — 6,5)) W@ 272 d8t+1 —

2
€ta1 d 1 _ (et4148)
S R
/ (Rt+1 rorpr Rt) e dew =
t 2rT

d s
BBy Bie) g
ot ol t

O 1 _ (et t0)?
Et41 ez degt

Q

S J—

1 (8t+1+§)2
( Rd) / e 22 degyy.
t+1 t t+1
V2?2

d
BBy Bie) g

otlt

Break the calculation of the integral into two parts.
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Introduce a change in variables to recast the integral in terms of the Standard Normal

distribution. Use v = % , or equivalently e,41 = vv/27 — £, and remember that for

the change z = p(t), the integralfﬁgj)) f(z)dz becomes f:f(go(t))gp’(t)dt. Here we use that
dv = dj’%l, so we need to multiply dv by V27 to express de,41 in terms of dv. Moreover,
we need to transform the lower limit using v. So we need to add £ to the lower limit of the

integral and divide the result by v/27.
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In sum, the FOCs can be written as follows:
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There are complementary slackness conditions which can be described by:
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A.2 Proof of Proposition 77

Equations (??7) and (??) can be expressed as
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where i € {s,r} denotes the type of equity. Using the expression, substitute for 1 in the
bank’s FOC with respect to e;. Therefore,
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Since the range of the erf function is between —1 and 1, i.e.—1 < erf(x) < 1, we know
that the following expression is between Wi and U3:
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Use Etﬁ)\ctHRfjl + ¢! = Ay (that comes from the household’s FOCs with respect to ¢!
for each i € {s,r}) to substitute for A\, in equation (??) . We get:
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Note that ¢oD; ** > 0 under the usual (and mild) assumptions on the preferences for liquidity.
Moreover, the Lagrangian multiplier on the households budget constraint, A, is positive. It
reflects the fact that the budget constraint always binds given the standard assumptions on

the preferences (Inada conditions). The latest expression is transformed into the following
after dividing it by A.:
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A.3 Combined First-Order Conditions
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Since x1; > 0, multiply the second equation by ~; and add it to the first equation using
& = % Therefore, the FOCs can be combined into:
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A.4 Zero-Profit Condition

Consider the zero-profit condition under all states of nature. Since there is no agency
problem between banks and households, this condition captures the fact that all the profits
(or losses) are distributed to equity holders after realization of shocks at the beginning
of each period. In each aggregate state, banks whose investments in risky firms pan out
will have returns that satisfy on average (over the realizations of the idiosyncratic shock)
[(Rt—i-l ft) li — RE(l; — e } th—i—lb - e; = 0, where the bounds of the integral are
chosen such that we integrate over banks for which the profit is non-negative, while banks

whose risky investments earn low (negative) returns will have Rf,, , = 0. Therefore,
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Since ;£ = --, we can rewrite the latter condition as (using that it holds for each i € {s,r}):

a
&
@L

G’g \/57’

S\ 2
((th(l'vt)RfH)QtJréa%)
— . d s i
ole Ry (1—’Yt)—Rt+1 Qtt+E&oy
i e (Rfﬂ—Q%—Rf(l—%)) [1—erf<< T Var )

t+1 = Yt

Note that the combined FOC from Appendix A.3 can be expressed as:
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where we substitute for 1 from Household’s FOC with respect to two types of equity:
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Notice that [! > 0 implies both x5, = 0 and ¢ = 0 which say that the zero-profit condition
implies the FOC.




A.5 Expression of Expected Dividends
Expected dividends (valued on date t) are defined as
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We have already calculated all the necessary integrals in Appendix A.1. Therefore,
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A.6 Linear Cost of Banking: FOCs of Banks
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We use (Riyy +0052) 1 — Rid, — fl, = 0 to get e, = (Hefiloe) _ B} - Con-

ditional on the optimal choice of o, the first-order conditions are:
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The derivations are similar to the ones described in Appendix A.1. The only difference is
that the lower bound of the integral now contains the additional term fl;. Hence, adding
€ to the lower limit of the integral and dividing the result by /27 make the terms in the

final expressions. Moreover, note that we should carry f in the expressions of the FOC with
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respect to ;. In sum, the FOCs can be written as follows:
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B The Non-Financial Firm’s Problem

B.1 Safe firms
Let 7/, denote the revenue of a safe firm in period ¢ + 1 net of expenses:
Tiv = Yo + (1 = 0)Qekiyy — Wiahiyy — f+1l{’s-

In this notation, the problem of the safe firm is to

max [, {maxwtﬂrl} .
1% ks hia

.- . Om} . .
The first-order condition for maxys 75, is =% = 0. It implies that
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Accordingly, the safe firm’s Lagrangian is:
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(B.1)

(B.2)

Notice that there is no expectation operator on the Lagrangian multipliers because those

constraints hold under every state of nature. The problem implies the following first-order
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conditions
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™ — 0 with equation (B.2) yields A3, = 0. Then, plugging aécl;ie = 0 into
+1 t
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L [Rfﬂ] Qr = E {O‘Zt:l + (1 - 5)Qt+1] .
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Consider the zero-profit condition of the safe firm under all states of nature. Since output
function has constant returns to scale,
. OYi 41

s s ayf—l-l s kf—l-l o s s
Yep1 = k%, kipr + %htﬂ = A hi kivn + Wiahiyy,

where we use equation (B.2) to substitute for W;, in the last equality. Plugging the expres-

sion of g, into 7§, = 0 and using Q;kf,, = I**, we find that:
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Since k7, ; > 0, we can divide by £} ; to get

ks a—1
R 1Qr = adi ( Hl) + (1 = 0)Qui (B.3)

s
ht—l—l

under all states of nature. This condition implies the first-order condition
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B.2 Risky Firms

Let 77, denote the revenue of a risky firm in period ¢ + 1 net of expenses:
Ty = Ui+ (1= 0)Qukiyy — Winhfyy — Ry 1]
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In this notation, the problem of the risky firm is to

max {maxwfﬂ} .
0k, hita

The first-order condition for maxpy, m, is Omin 0. It implies that

Ohy 4
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W, = 2+ _(1—-a)A B.4
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A ]{ZT e h,r 11—«
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Accordingly, the risky firm’s Lagrangian is:

ris r @y I-a T r T T )T
L =L |:At+1 (kt+1) (ht+1) + €t+1kt+1 + (1 - 5)Qt+1kt+1 - Wt+1ht+1 - Rt-{—llg } +

Avia (Kipn)” (hi) ™

el Wi

(1—-a)

T
- ht+1

N (= Quky )

Notice that there is no expectation operator on the Lagrangian multipliers because those

constraints hold under every state of nature. The problem implies the following first-order

conditions
85;;,571“{}, = _Et [R:Jrl} + )\th =Y
2 o () -]
MiEr [a(1—a) %J: (Zi:_i) a—1] -\ Q: =0,
g)ait:y = (1—a)Ay, <:’2‘:)a — Wit + Ay, [(1 —a)’ ;%11 (Z_i)a _ 1] _0.

. . risk . . risk; . risk;
Equation (B.4) together with %ﬁhgﬂy = 0 yield A}, = 0. Plugging agl{my = 0 into 8(§€€+1y for

Al we get

kr a—1
aAi < tH) + (1 —0)Qts1 + €41

B[] Q= B | ade (122
t+

13



Combining equation (B.1) with equation (B.4):

ks kT

S (B.6)
ht+1 ht+1

under all states of nature. But remember that the first-order condition of the safe firm

implies
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Consider the zero-profit condition of the risky firm under all states of nature.
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r T r « r I-a r ,Tr
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T a r l-a r r T ,T
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where we use equation (B.5) to substitute for Wy;1h}, ;. Using equation (B.3) together with

equation (B.6), we can express
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that holds under all states of nature. Plugging it into the zero-profit condition and using
Qikl, = 1", we find that:

Ry 1 Qikiyq — (1—- 5)Qt+1kZ+1 + &1k + (1— 5)th:+1 — Ry, Qiki = 0.

Since £k, ; > 0, we can divide by k] _; to get
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under all states of nature. This condition implies
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B.3 Aggregating across firms

Here we show that we can aggregate individual firms into two representative firms. Let
denote kﬁt the capital chosen by firm ¢ that is financed by borrowing from bank j. Both ¢ and
7 lie within the continuum of measure 1 of banks and firms, respectively. In this notation,

the equation (B.6) is written as

ki k
o= (B.7)
Jit4+1 t+1

forall j € [0,1] and i € [0, 1]. Each firm chooses the same capital-to-labor ratio independently
of the type of bank it borrows from.

Notice is that o, is the fraction of risky firms at date ¢; the remaining fraction 1 — o; of
firms are safe firms. Let’s index firms as follows: firm j;, with j; € [0, 0¢], can only access a
risky technology subject to both aggregate and idiosyncratic shocks; firm j,, with js € [0y, 1]
has access to a safe production technology subject to aggregate shocks only. Since there are
no equilibria with ¢ < 0, < 7, the fraction of risky firms is linked to the fraction of banks

with risky portfolios as follows:
o= (1— ) o+ uo.

Define the following objects: Let K3, ; = fat f n ! 1djdi be the total capital allocated
to the safe technology and financed by borrowing from the banks that choose a fraction o
of risky projects. Let K, , = f f’” k; (+1djdi be the total capital allocated to the safe
technology and financed by borrowing from the banks that choose a fraction ¢ of risky

projects. We let K7, ; denote the total capital allocated to the safe technology. Thus,

11
Kts+1 = //k ,t+1dﬂd@ st+1 +Kﬁ,t+17
0

ot

Let K,y = Oat f:t k';t 41djdi be the total capital allocated to the risky technology and
financed by borrowing from the banks that choose a fraction o of risky projects. Let
Ky = o k!, djdi be the total capital allocated to the safe technology and financed
by borrowmg from the banks that choose a fraction & of risky projects. We let K7, , denote
the total capital allocated to the risky technology. Thus,

ot 1

Ki = // ]t+1d]dz st+1 +Krt+17
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The same upper and lower case notation applies to labor, i.e. H§t+1 = fglt f:t h;tﬂdjdi;

Hf,tﬂ f fm hz 1 djdi; H A B f h’] 1 djdi; H:,t+1 m h; rdjdi
Safe representative firm produces.

//At hi,)' " djdi = // ki hiy) djdi =

Using that the technology has Constant Returns to Scale:

/ / Fig (R h) Ky o (Kb 1) 1| djdi =
Ot—1

where Fj: (i, hi,) and F, (Ki,. h%,) denote the partial derivative of F (K, h%,) with
respect to k“t and hjt, respectively. Since these partial derivatives are homogeneous of

degree zero, we can express them in term of capital-labor ratio, i.e

. Kt ,
/ / [sz ( g ) K+ fh;;t (hz.’t> h;t] djdi = Plugging equation (B.7) =
+ \ hi,
11 y
- [ [ s ( Vit o () 1] i -
0

Ot—1
k [ k k
g //k;tdjdi +fht = // (didi| = fo, | =) K+ fo, | = ) Hf =
ht ht ht
Ot 0
. K;, Ki, Kih, (Ko AK\ H, _kt
Since i, =, Sk = (Hsﬁr s > K, =

~ fr; (K:)Ks+fH (52 ) e = actocey o)

Risky representative firm:

ot—1 1

ot—1 1 ot—1 1

://[At (ki) (hi)' ™ + €l kel Jt djdi = //F t o hhy djdl—l—//c”jt k; djdi
0 O

Note that the similar steps described above apply to the first term in the summation

so that [/ fo (ki hi,)djdi = A, (K])* (H})'™®. To express the second term, notice
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that f o fol 5§’tk§’tdjdz’ = —¢. Moreover since each risky firm solves the same maximization
problem, it chooses the same amount of capital independently of the type of bank it borrows
from. Therefore, [ fol e ki djdi = —¢K]. Hence,

Y] = A (K))™ (H])'"* - ¢K].

C The Government

The government levies the tax to fully compensate for the loss to the deposit insurance

fund due to rescue of defaulted banks.

C.1 Baseline: No linear cost of banking

T, = — / ((R,i + Utlgt) Ly — Rf_lDtl) dG(e,) =
Qtfl
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Qt—1

Rﬁi—lDt 1
T Qt—1
oy T

Note that the first term equals <Rs 2= 15) L1+ Rt 1D;—1 in the square bracket. We have

already calculated the second term. Therefore,
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ot—1L¢—1 T op_1V2T _

Qi1 v © o

1 or_1€ d —Yt—1)Qt—1—R{Qr—1+E0t—1

2 (Rth—l — o L1 — RtﬂDt—l) [1 + erf( o~ lth )] .
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C.2 Linear Cost of Banking: Tax

The tax that accounts for the cost of banking is described as follows:

ot—1lt—1  g¢—1

_1€&
T, = — / <<Rf + (’é It f> Iy — Rf_ldt1> dG(g,) =
t—1

—00

d
Ry_1dt—1  R{—f
-t Qi1

2
(f+th—1(1_’7t—1)_RtS)Qt—l+50t—1

o1l T *< o 1 V2r ) < IS > d
— e — | R, — — li_1+ Ry (di_1+
Qt—l \/% t Qt—l f t—1 t—1%t—1

lltfl <Rf _Z=b (1—y1) R, — f) [1 —erf <(f + R (=) - Rf) Q-1+ §Ut1)] -

2 Qi1 Ut71\/§T
(f“{tdq(1*%71)*@3)@%1%%71 ?
o1l T . o V3T B
Qi1 V21
1 1€ d ) (f+REL (1 =) — BY) Quoa + E0vn
|\ Ry — —=—=l;1 — R dy—q — fli_ 1+ erf .
92 < tvt—1 Qt—l t—1 t—1%t—-1 f t—1 O't_lﬂT

D Choice of Risk

This appendix shows a proof that the expected dividends function of banks is convex in
the risk parameter o;. This result guarantees that banks choose either the maximum risk,
o, or the minimum risk, ¢, to maximize their profits, so all the intermediate values of oy,
which may result from the first-order conditions with respect to o;, are not optimal.

We generalize the proof taken from Van den Heuvel (2008) to the case with aggregate
uncertainty. The proof applies to an arbitrary distribution of the idiosyncratic shock, €;1,
with non-positive mean, so our example of a Normal distribution considered in the analysis
is not a special case which can drive our results. It is used for expositional reasons and

quantitative work.

Assumption. ¢ has a cumulative distribution function G, with support [g, &, with e < 0 <
g. The mean of ¢ is equal to —& (£ > 0). ¢ is independent of the aggregate shock. The

aggregate shock does not depend on the choice of oy.

Note that we do not restrict the analysis to the bounded support?, so € and & can take
—o00 and +o00, respectively. Note that GG. need not be continuous.

d 1 d(1__ _ pPs
Let é(oy, R,) = (M — %> Q: = M@t, where the latter equation uses the

ol ot ot

result that the capital requirement constraint always binds. Therefore, (Rf 1t O'té(QU:)) l; —

'Unbounded support is more relevant if we consider aggregate risk
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Rid, = 0. Let w(oy, R;,,) = E. [((RfH + %) Iy — Rfdt> T be a function of expected
dividends (taken over the idiosyncratic shock only) under some realization of R, , which is
considered to be fixed in this function. To account for the aggregate uncertainty, I;, ; needs
to be a random variable. Therefore, expected dividends taken into account both idiosyncratic

and aggregate uncertainty are

(o) = Q/ 7 (01, B}\y () P(dw) = E / ((R§+1 + %‘j) I — Rfdt) dG. | =

E(oe, Ry q)

: E(ot, R3y,)

E, / (<R§+1 + "_tg> I, — Rfdt) dG.| — E, / (( R+ f’i) I, — Rfdt) aG. | =

Q: Q:
£ £
] é("thde)

o o ) 5

E\R;, 11, — Rid, — ﬁlt -0 b / (e —&(ow, Riyy)) dGe| =
o Q:

13
é(oe, Riq)
l A s
Ey Ryl — Rid; + Q_t oLy / (E(Ut, Riy) — 5) dG. | — 0§

t
£

Note that in the derivations above we express <Rf 1t %f) l;—R{d; in terms of £(oy, RS, )
and ¢ using the definition of &(oy, R}, ).

The proof below shows that II(o;) is convex in o;. Since the expression of II(oy) involves
the term which is linear in o; and & > 0, the sufficient condition for II(o;) to be convex in

o; is that

H(Ut) = Et O

[ o) -2ac.

is convex in oy.

Claim. H(oy) = L, E; [fg(gt) (é(at, R;.,) — 5) ng] oy 18 convex in o;:

Proof. Steps of the proof: O

1. Define h(oy, R} ) = oy [fg(at’Rf“) ((o¢, Ryyy) —¢) dGE} in which the aggregate un-

certainty is taken off. Consider 3 cases:

R (=)= Ry,

(a) Realization of R , is such that é(oy, R7,,) = .

Rgl(l _%)7

> 0, so R}, <
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d(1__ __ps
(b) Realization of R; , is such that é(oy, Rl ) = Rt(l+j&“ < 0, s0 Ry | >
Rgl (1 - %) )
d(1_ _ pPs
(¢) Realization of R, is such that é(oy, Rl |) = Rt(l+)&“ =0, s0 R}, =

Rgl<1 _fyt)7

Show that h(oy, Rj, ) is convex in oy in cases la and 1b and h(oy, R7,,) is linear in oy

in case lc.

2. Employ the argument that convexity is preserved under non-negative scaling and ad-
dition (guaranteed by the expectation operator over the aggregate uncertainty) to find

that H(oy) is convex.

Let’s show each step of the proof formally

1. Let oy, < 09 and, for A € (0, 1), define oy, = Ao+ (1 — X)oo. Let é; = (0w, Ry ,) =

R{(1—m)-Rj,, C_
—tQt’ fori=1, 2, \.

(a) Ri, < RY(1—n,): it implies that &, < &, < &y,

é(oxe)

h(ox) = (Aow + (1 = A)oay) {/5 (E(on) —€) dGa} =

Aoy {/ (é) — ) dG. — / (éx—€) dGE} n
£ éx

(1= MNoy {/;2 (éx—¢) dGE+/éj (6 —¢) dGE} _

Ao {/ (&1 — €)dG. + (6x — &1) G(&1) + / (e — &) ng} +
£

éx

(1= Now {/ (62— £)dG. + (21 — ) G.(82) +/éA (ér— o) ng} <

)

Aot {/ (61 —e)dG. + (éx — €1) Ge(61) + / (1 —€)) dGE} +
g

g €
éo Ex
(1 —=Xog {/ (o —€)dG. + (é\ — é2) G(é2) + / (Ex — &9) dGE} ,
£

éo

~

where the inequality sign comes from f;: (e —£€\)dG. < f;;l (61 — €\)dG. and
f;; (x —e)dG. < f;;* (€x — €2) dG.. Substituting for the definitions of h(cy;) =
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o1t fél (61 —¢e)dG. and h(oy) = o9y f; (€9 — €) dG., we get:

h(O’)\t> S )\h(O’lt) + (1 — )\)h(02t> + >\0'1t {(é)\ — 51) Gs(é)\)} +
(1 — )\)O'Qt {(é)\ — ég) Ga(é)\)} = /\h(O’lt) + (1 — /\)h(O'Qt)+
G5<é>\) (/\0'1,5 (é)\ — él) + (1 - /\)O’Qt (é/\ — ég)) = )\h(O’lt) + (1 — )\)h(O’Qt),

where we use that oy, = [, (Rf (1 =) — RfH) = 09€y = O£y In the last equal-

ity. So,

O (é,:)\ — él) + (1 — /\)02t (é,\ — éz) =
Ex(Aau 4 (1= Noa) = (B (1 =) = R) A+ (1= X)) =
oxnéx — (R (1 =) = Ryy) = (RY (L =) — Ryy) — (RY (1 — %) — Ryyy) = 0.

Therefore, h(o) is convex in oy for Rf ; < Ry (1 — ).

(b) R;,, > R{(1—): it implies that &; < &, < &,

é(oat)
h(oxa) = (Ao + (1 — N)oa) { /5 ((ox) — €) dGa} —

Mu{/j (éA—E)dGmL/; (é,\—e)dGE}+
(1 — N)oa {/j (6x— ) dG. — /j (ér—¢) dGE} _

/\alt{/ (ég—5)dG€+(éA—él)G€(él)+/ (ék—e)dGE}Jr
£

é1

(1= o {/8 (E2 — €)dG. + (6r — £) GalEs) + / (e — &) dGE} <

Ex

é1 Ex
)\Ult{/ (1 —¢) ng—i—(é)\—él)GE(él)—l-/ (é,\—él)dGE}—i-
£

(1 —MN)oy {/ (€9 —e)dG. + (Ex — &2) Ge(&2) + / (9 —€y) dGE} ,
£ éx

~

where the inequality sign comes from f;l* (x—¢e)dG. < f:ﬁ (x — €1)dG. and
f;f (e —£€\)dG. < f;f (€5 — €,) dG.. Substituting for the definitions of h(cy;) =
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o1t fél (61 —¢e)dG. and h(oy) = o9y f; (€9 — €) dG., we get:

h(O’)\t> S )\h(O’lt) + (1 — )\)h(02t> + >\0'1t {(é)\ — 51) Gs(é)\)} +
(1 — )\)O'Qt {(é)\ — ég) Ga(é)\)} = /\h(O’lt) + (1 — /\)h(O'Qt)+
G5<é>\) (/\0'1,5 (é)\ — él) + (1 - /\)O’Qt (é/\ — ég)) = )\h(O’lt) + (1 — )\)h(O’Qt),

where the last equality follows from the same reasoning employed in the previous

case. Therefore, h(oy) is convex in o, for Rf ; > RY (1 — ).

(¢) Ri,; = R{(1—1). Hence, £(c;) = 0 and

h(oy) = o, Mo(o—gmc;s],

which is linear in oy
2. We found in 1 that h(oy, R;,,) is convex in o; for each Rj,; € R. Consider P(w) > 0

for each Rl ,(w) € R. Then the following function?:

/Qh (01, R}, (w)) P(dw) = E;h(oy, R;,,) = H(o¢)

is convex in o;. It follows directly from the linearity of the expectation operator which
puts a non-negative weight on every realization of R; ; and the fact that the sum of

convex functions is a convex function. Therefore, I1(0y) is convex in ;. O

?Linearity in o for one particular value of R; ; can be considered as a weakly convex function, so it does
not change the nature of the argument
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E Equilibrium Conditions
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F Discussion of the Excessive Risk-Taking Mechanism

Following our the result derived earlier, we can express the erf function in terms of the
share of non-defaulted deposits of the representative bank and then decompose the expected

dividend into two components:

2 (Mu Ot, lt) = L {At,t+1lt [wl + wo — (1 - %)]}7

where

_(Etrate ?
wr + wa] = ( fH—Rf(l—%)—%> (1—G(sj+1))+\(%) e (" ) |

non-defaulted ~~

N

-~

w9 = bonus from
w1 = returns from a loan

projects volatility

portfolio with riskiness oy

and the cutoff point €}, is defined by RY (1 — ) Q: — R}, Q: = ovey,.

The first component, w;, distinguishes loan returns of riskiness o, controlling for the
variance of idiosyncratic shock (when 7 is taken as given). The bank trades off the benefits
from limited liability and deposit insurance with a smaller profitability of riskier projects.
The term %t reflects, in expectation, the reduction of loan returns for the bank holding o,

Q1
share of risky projects. The bank receives net income on loans, Rf ; — R (1 — ;) — o

if it does not default on deposits which happens with probability 1 — G(e;,,). If the baci;k
defaults, it gets zero, i.e. 0-G(ej, ;) which is not shown in the expression explicitly.

The second counterpart of the above decomposition, wy, comprises the extra effect of o,
on expected dividends that comes from more dispersed returns from projects. In fact, wo
is strictly increasing in 7: the bank views projects as a call option the value of which rises
with volatility associated with higher upside. Limited liability bounds the payoff to zero in
the worst case scenario.

Risk-taking incentives depend on the difference between returns on safe loans and returns
on deposits. Table 1 illustrates the effects of greater risk-taking on two components of div-
idends for each realization of the aggregate returns. We map aggregate returns into states
of nature and consider two cases depending on the sign of €7, ;. The aggregate returns influ-
ence the value of the shield of limited liability. Risk amplifies the effect of the idiosyncratic

shock. So, in every state of nature, the bank’s choice of risk is determined by the expected
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effect of the idiosyncratic shock on the value of the shield of limited liability and returns on
loans. The up-turn arrow, {}, indicates that greater risk-taking increases the corresponding
component of bank’s dividends. The down-turn arrow, |}, means that the corresponding
component of bank’s dividends decreases with greater risk-taking. Two arrows turned in the
opposite directions, N}, signify that the effect of greater risk-taking is undetermined and

depends the parameterization.

Table 1: Illustrating the Effects of Higher Risk on Dividends.

Effects on wy
States of nature where ; 7 o ” Effects on wo
Ry, — R (1—n)— 0, 1-G(ei)
RL,<RI(1-7) & ¢eq>0 28 i i

if e, > =&, then 1y

if ef,; < =&, then

Rl >R{(1—v) & &4 <0 I U

First, ;. ; > 0 indicates that the bank makes losses on safe loans. It happens in those
states of nature where the net income from the zero-risk portfolio is negative, so the bank
is behind the shield of limited liability. By accepting more risk, the bank is more likely to
get a positive net return under a favorable realization of the idiosyncratic shock as risk acts
like a leverage on the size of the shock. Therefore, 1 — G(ej,;) rises. This balances with
smaller returns on a portfolio with more risky loans, i.e. Rf ; — RJ (1 — ;) — %t goes down.
Similarly, gambling on more dispersed returns allows the bank to move away from a zero
return that comes from the limited liability to some positive return that is accompanied by
less frequent defaults. So, the effect of o; on expected dividends from ws is positive.

Second, €}, ; < 0 shows that the bank makes positive profits on safe loans. The bank is
more likely to default when it takes on more risk because any negative idiosyncratic shock
would be amplified by risk. The bank internalizes that riskier projects are less profitable.
Therefore, the overall effect of greater risk on w; is negative when e;,; < 0.

Then consider the bonus from projects volatility. If —§ < g7, < 0, there are two
contrasting forces. On the one hand, the bank always benefits from limited liability that
makes the variance of projects returns attractive. On the other hand, the bank is more
concerned about (and more vulnerable to) the variability of returns in the situation when
taking on more risk would result in zero payoff instead of some positive payoff achieved by
smaller risk. It occurs when —§ < g;,; < 0. In these states of nature, the bank requires
greater than average realization of the idiosyncratic shock in order to get a positive return.
Call this type of shock a good idiosyncratic shock. This shock happens with probability
smaller than 0.5. Define a bad idiosyncratic shock as a complement to a good idiosyncratic

shock. An increase in risk increases the profits under a good shock. It captures the benefits
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from greater upside. At the same time, an increase in risk makes it more likely to get a
bad shock. The bank trades off marginal profits coming from a good shock with marginal
losses coming from the reduction of profits due to more defaults. Since the probability of the
latter is greater than the probability of the former, the losses from defaults can dominate the
benefits from greater volatility. This force goes in the opposite direction when ¢}, ; < —¢.
The difference is that here the bank is more likely to get a good shock than a bad shock.
Therefore, the bank puts more weight on the benefits from risk-taking than on its costs.
It is verified mathematically that the effects of o; on ws is unambiguously positive when
€1 < —€

In sum, we find that net returns on safe loans, Ry, ; — R{ (1 — v;), is the main driver for
the bank’s choice of risk. In the partial-equilibrium setting, we differentiate between three
cases that characterize incentives for risk-taking.

First, Rf | < RZ (1 — ~,) applies to the states of nature where a relatively large negative
aggregate shock is realized. Two forces against the one that seems to be of lesser relevance
make the bank benefit most from taking risk. Second, —¢ < R¢ (1 — ;) — R;,; < 0 applies
to the states of nature where intermediate values (not too large and not too small) of either
negative or positive aggregate shock are realized. There are more forces that lower incentives
for risk. Third, R (1 — ) — R{,; < —& applies to the states of nature where a positive
aggregate shock of a larger size is realized. Interestingly, there is a force associated with
the bonus from projects volatility that makes it possible for the bank to increase risk. The
choice of risk depends on the strength of that force, wy, relative to the negative exposure of
returns from a loan portfolio to risk, w;. It still remains a quantitative question to find out
how risk-taking is determined in the general equilibrium set-up.

Capital requirements affect risk-taking through a change in €;, ;. When ~; increases, €},
falls. It means that the bank will be more likely to find itself in the states of nature where
€/, is negative. It forces the bank to keep more skin in the game, make the shield of limited

liability less attractive and prevent the switch into financing risky projects.

G Calibration of 7

To calibrate the variance of the idiosyncratic shock 7, we link the production function

of the risky firm to the production function of the safe firm that has a preexisting debt.
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Remember that the next period returns to safe and risky loans are given by

) Ay (K 7! Q
S = t+1( t+1) +(1_5) t+1

Qr \Hen Q'
Ei+1
1= Rf+1+URFa,

respectively. The parameter ogrp is needed to distill the exposure of banks (versus other
financial intermediaries) to the risk arising in the leveraged loan market. It captures the
fact that a certain fraction of leveraged loans is held by the nonbank sector which we do not

model here. The risky bank that finances the maximum share of risky projects earns
isk
Q:f1y - R;+1QtK;+1'

It comprises EBITDA and what the bank makes or loses by selling capital to capital pro-

ducers. The safe bank with preexisting debt earns

safe s s B B
O = RS, Q; (Kiyy + By) — QuB.RP = ( e (1 " ) " RtB) QiKyi1,
Ky Ky

where B; is a predetermined debt, measured in units of capital, and RP is a predetermined

interest rate. We equate the conditional variances of the returns to loans

i . B B
Var, (Ry,,) = Var, (Rt+1 (1 + K;) — Kt;RtB)

to find the variance of the idiosyncratic shock that matches % = 6. Note that

o
Bt Bt B> ( Bt )2
Var Ry 1+ - R =1+ Var ; ’
' ( i ( Kt+1> Ky t Kis t ( t+1)

where K, is the steady-state level of capital of the safe firms that are financed by commer-

2
Var, (R,) = Var, (R},,) + (URF) 72,

cial banks and @); = 1 in the steady state.

The conditional variance of the returns on safe loans is given by

K 200—2
Var, (R},,) = o’ (HHI) Vary (A1) + (1= 0)*Var, (Qus1) +
t+1

K a—1
2c ( t+1> (]_ - 5)001),5 (At+17 Qt+1) .
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We can calculate the conditional variance of Q)11 by picking up its process from the
optimization problem of capital producers. However, our approach is meant to be suggestive,
and we equate the conditional variances of ();,; and the aggregate shock. The covariance
term is expected to be positive, but we drop it in our calculation because the terms that
multiply the covariance are small. The model’s counterpart for EBITDA is a total output

net of compensation for labor. Thus

Debt Bt Bt

EBITDA  y o _ yy,gs0e  qysede

The data analog of ogp is the share of leveraged loans held by banks (where the remaining
fraction is held by nonbanks). We choose orp = 45% from the Shared National Credit Report
issued by the Fed, OCC, and FDIC.
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H Robustness Checks
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Figure 1: Robustness Checks.
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