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Abstract

We develop a toolbox that characterizes the welfare-maximizing cooperative

Ramsey policies under full commitment and open-loop Nash games between

policymakers. We adopt the timeless perspective. Two examples for the

use of our toolbox offer novel results. The first example revisits the case of

monetary policy coordination in a two-country model to highlight sensitivity

to the choice of policy instruments. For the second example, a central bank

and a macroprudential policymaker are assigned distinct objectives in a

model with financial frictions. Lack of cooperation can lead to large welfare

losses even if technology shocks are the only source of fluctuations.
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1. Introduction

Policymakers face the challenging task of finding the appropriate re-

sponse to the actions of other policymakers. This task has informed active

research on the gains from monetary policy coordination across countries,

as described in detail by Canzoneri and Henderson (1991). Strategic inter-

actions also arise within a country when different policymakers are assigned

or pursue distinct objectives. For instance, the expansion and reorganiza-

tion of regulatory responsibilities spurred by the Financial Crisis has been

approached differently across countries. In the United States the Dodd-

Frank Act substantially increased the macroprudential responsibilities of

the Federal Reserve. In the United Kingdom, the Financial Services Act

2012 established an independent Financial Policy Committee as a subsidiary

of the Bank of England, with some policymakers participating in both the

Monetary and the Financial Policy Committee. By contrast, in the euro

area, monetary policy is strictly separated from macroprudential regula-

tion, although both functions involve the European Central Bank. Other

examples include the interaction between fiscal and monetary authorities or

games between countries about improving global competitiveness by setting

tariffs and taxes across countries.

To facilitate the study of strategic interactions between policymakers,

we develop a toolbox that characterizes the welfare-maximizing cooperative

Ramsey policies under full commitment and open-loop Nash games from the

timeless perspective. Our algorithm automates the analytical derivation of

the conditions for an equilibrium under cooperative and open-loop Nash

games. The algorithm has four main advantages: 1) it is fast; 2) it is

widely applicable; 3) it avoids the error-prone manual derivation of the

conditions for an equilibrium; and 4) it makes results easy to replicate.

These characteristics open up the possibility to consider questions beyond

the reach of other approaches to setting up games in a DSGE setting, as

we showcase in our examples.

The toolbox is designed to extend Dynare, a convenient and popular
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modeling environment.1 Our work augments the single regulator frame-

work of Lopez-Salido and Levin (2004). The general framework for the

policy games that we consider distinguishes between two groups of agents:

the first group consists of private agents who incorporate the (expected)

path of the policy instruments in their decisions; the second group con-

sists of the policymakers, who determine policies taking into account the

private sector’s response to the implemented policies. Taking as input a

set of equilibrium conditions given arbitrary rules for the reactions of the

policy instruments, our toolbox replaces those rules with either the welfare-

maximizing Ramsey policies or with the policies for the open-loop Nash

game under the timeless perspective.

To showcase the wide applicability of our toolbox, we consider two exam-

ples and provide new results regarding the gains from cooperative policies.

The first example is a two-country monetary model that closely follows Be-

nigno and Benigno (2006), and Corsetti et al. (2010). These authors char-

acterize the optimal monetary policies under cooperation and the open-loop

Nash game between two monetary policy authorities in a dynamic general

equilibrium model with sticky prices. If we take a linear approximation to

the policymakers’ first-order conditions around the optimal deterministic

steady state of the model, we confirm that our toolbox produces the same

results as the linear-quadratic approach in Benigno and Benigno (2006) and

Corsetti et al. (2010).

A key advantage of our toolbox is the automation of the analytical

derivation of the cooperative and open-loop Nash policies, once the actions

of the private agents are characterized. Beyond the replication of existing

results, the rapidity and convenience of deploying the toolbox allows us

to explore with ease different strategy spaces associated with alternative

instruments. We find that the instrument typically selected for this kind

of exercise, producer price inflation, would not be selected if policymakers

1See Adjemian et al. (2011).
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could enter a meta-game on instrument selection prior to the formulation of

their optimal strategies. They would instead choose real output, a finding

related to the lower spillover effects abroad associated with the strategy

space for this instrument. Following the linear-quadratic approach, each of

the twenty-five combinations of instruments that we consider would involve

a new set of long and tedious algebraic derivations.

As a second example, we consider the workhorse New Keynesian model

with financial frictions of Gertler and Karadi (2011). An agency problem

on financial intermediaries has two effects. First, the problem inefficiently

limits the provision of credit. Second, the agency problem also magnifies

the reaction of the economy to shocks through familiar financial acceler-

ator mechanisms. We extend the model of Gertler and Karadi (2011) to

include a transfer tax between households and firms. Within that model,

we consider a game between a financial policymaker and a central bank –

a question not previously explored. The policy instrument of the central

bank is the inflation rate; the policy instrument of the financial policymaker

is the transfer tax. The objectives of the two policymakers reflect the pref-

erences of households, but in both cases include an extra term. The central

bank has an objective biased towards stabilizing inflation. The financial

policymaker has an objective biased towards stabilizing the provision of

credit. We characterize optimal cooperative Ramsey and open-loop Nash

policies. Crucially, we constrain the choice of biases so that the cooperative

policies with the skewed objectives come close to replicating the allocations

under policies that maximize the welfare of the representative household.

Nonetheless, the strategic interaction between policymakers lead to large

and persistent deviations from cooperative outcomes and imply substantial

welfare losses.

To highlight the wide applicability and rapidity of our toolbox, we also

consider how the introduction of altruistic objectives that would (at least

partially) internalize the bias of the other policymaker affect the open-

loop Nash equilibrium. Intuitively, we confirm that altruistic preferences
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move the Nash allocations closer to the cooperative allocations, even in the

presence of biases.

The optimal control literature that focuses on DSGE models typically

derives first-order conditions but does not check second-order conditions.

Forward-looking variables in DSGE models complicate substantially the

analysis of second-order conditions especially when considering fully non-

linear solutions. An exception is the work of Benigno and Woodford (2012),

who derive second order-conditions for an optimal control problem in the

case of a single planner under a linear-quadratic solution. Benigno and

Woodford do not provide analogous derivations for the more involved case

of the open-loop Nash problem considered here.

Our approach to checking second-order conditions relies on taking per-

turbations of the optimal solution in the direction of arbitrary policy rules.

We verify that a convex combination of the optimal rule and an arbitrary

policy rule does not improve the objective function of the policymaker. This

check applies both under cooperation, and under the open-loop Nash solu-

tion. After all, in the open-loop Nash case, we are interested in the best

response of a policymaker to the best response of the other policymaker.

Our toolbox is not limited to solving the particular examples above.

Following the approach in Dixit and Lambertini (2003), differences in ob-

jectives are fertile ground to explore the strategic interactions between pol-

icymakers. For instance, the solution under coordinated optimal monetary

and fiscal policies explored in Schmitt-Grohe and Uribe (2004) could be

readily extended for strategic interactions after allowing for differences in

the objectives of the monetary and fiscal authorities. More recent examples

of stylized models that set the stage for strategic interactions between pol-

icymakers include Costinot et al. (2014), who illustrate the use of capital

controls to manipulate the terms of trade, and Brunnermeier and Sannikov

(2014), who show how capital controls may improve welfare in a model

with financial frictions (but who do not consider a non-cooperative solu-

tion). Furthermore, our toolbox greatly facilitates the analysis of more fully
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articulated models. Examples include Bergin and Corsetti (2013), who in-

troduce firm entry into a two-country model to study how the resulting

production relocation externality influences monetary policy, and Fujiwara

and Teranishi (2013), who allow for nominal rigidities in loan contracts.

The rest of the paper is organized as follows. Section 2 outlines the algo-

rithm for calculating cooperative optimal policy and extends the algorithm

to the calculation of optimal policies in open-loop Nash games. Section 3 ap-

plies the algorithm to an open-economy model where each country wishes to

maximize welfare, and Section 4 considers the application of our algorithm

to a model with a monetary authority and a macroprudential policymaker.

Section 5 concludes. An online appendix provides instructions for the use

of our toolbox as well as a more detailed description of our examples.

2. Equilibrium Definitions and Solution Algorithms

This section defines an equilibrium under cooperative Ramsey policies

and under an open-loop Nash game. We discuss computational issues and

concepts as appropriate.

In maximizing the policy objectives subject to the structural equations

of the private sector our toolbox employs a Lagrangian approach. The ex-

act nonlinear first-order conditions that characterize the optimal policies

under cooperation and the open-loop Nash game, respectively, are obtained

by symbolic differentiation. Each system of equations is then approximated

around its deterministic steady state using higher order perturbation meth-

ods. An alternative approach to characterizing optimal policies uses linear-

quadratic (LQ) techniques. The LQ approach involves finding a purely

quadratic approximation of each policymaker’s objective function, which is

then optimized subject to a linear approximation of the structural equa-

tions of the model. Following Benigno and Woodford (2012), Levine et al.

(2008) and Debortoli and Nunes (2006) we show how the LQ approach re-

lates to the approach underlying our numerical procedure and that the LQ

approach delivers the same solution if the nonlinear output of our toolbox
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is approximated to the first order.

2.1. General Framework

Policy games distinguish between two groups of actors. We label the

first group “private agents.” Private agents take into account the (ex-

pected) path of the policy instruments. The second group consists of the

policymakers who determine policies taking into account the private sec-

tor’s response to these policies. With more than one policymaker, strategic

interactions between the policymakers can cause the outcomes of the dy-

namic game to deviate from those of the welfare-maximizing cooperative

policy. For simplicity, we restrict the exposition to the case of two poli-

cymakers (or players). Furthermore, each policymaker is assumed to have

only one instrument.2

Let the N ×1 vector of endogenous variables be denoted by xt, which is

partitioned as xt = (x̃′t, i1,t, i2,t)
′. The variable ij,t is the policy instrument of

player j = [1, 2], respectively. The exogenous variables are captured by the

vector ζt. For given sequences of the policy instruments {i1,t, i2,t}
∞
t=0, the

remaining N − 2 endogenous variables need to satisfy the N − 2 structural

conditions that characterize an equilibrium

Etg(xt−1, x̃t, xt+1, i1,t, i2,t, ζt) = 0. (1)

We assume that the system of equations in g is differentiable up to the

desired order of approximation. Without loss of generality and to facilitate

changes in the set of policy instruments for our toolbox, the block of struc-

tural equations (1) contains two definitions relating the generic instrument

variables i1,t and i2,t to the desired instruments in the model. For example,

if player 1 uses the inflation rate π1,t as instrument, following Woodford

(2003), then one of the equations in (1) simply reads i1,t − π1,t = 0.

2Our toolbox is currently restricted to games between two policymakers with one

instrument each. However, it should be straightforward to extend the toolbox to handle

more than one instrument per policymaker and more than two policymakers.
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To complete our framework, we need to describe how policies are de-

termined. The intertemporal preferences of player j are given by Uj =

E0

∑∞
t=0 β

tUj(x̃t−1, x̃t, ζt) with the generic utility function Uj(x̃t−1, x̃t, ζt)

required to be concave. Under cooperation, the two players maximise the

joint welfare function ω1U1 + ω2U2 for given weights ω1 and ω2. We nor-

malize the welfare weights to satisfy ω1 + ω2=1. Absent cooperation, each

policymaker considers his own preferences only.

2.2. Definition of Equilibrium under Cooperation

The welfare-maximizing Ramsey policy with full commitment is derived

from the maximization problem

max
{x̃t,i1,t,i2,t}∞t=0

E0

∞∑

t=0

βt [ω1U1(x̃t−1, x̃t, ζt) + ω2U2(x̃t−1, x̃t, ζt)]

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0. (2)

The first-order conditions for this problem can be obtained by differen-

tiating the Lagrangian problem of the form

L0 = E0

∞∑

t=0

βt [ω1U1(x̃t−1, x̃t, ζt) + ω2U2(x̃t−1, x̃t, ζt) + λ′tg(xt−1, xt, xt+1, ζt)] .

(3)

The (N − 2) × 1 Lagrange multipliers associated with the private sector

equilibrium conditions in (1) are denoted by λt for any t ≥ 0.

Taking derivatives of L0 with respect to the N endogenous variables in

xt delivers N first-order conditions. Additionally, taking derivatives with

respect to λt delivers again the N − 2 private sector conditions. In total,

there are 2N − 2 conditions and 2N − 2 variables. In sum, for t > 0 the

Ramsey equilibrium process {x̃t, i1,t, i2,t, λt}
∞
t=0 satisfies

∑

j=1,2

ωj{DxUj(x̃t−1, x̃t, ζt) + βEtDx−Uj(x̃t, x̃t+1, ζt+1)}

+βEt

{
λ′t+1Dx−g(xt, xt+1, xt+2, ζt+1)

}
+ Et {λ

′
tDxg(xt−1, xt, xt+1, ζt)}

+β−1λ′t−1Dx+g(xt−2, xt−1, xt, ζt−1) = 0 (4)

Etg(xt−1, xt, xt+1, ζt) = 0, (5)
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while for t = 0 the process satisfies

∑

j=1,2

ωj{DxUj(x̃−1, x̃0, ζt) + βE0Dx−Uj(x̃0, x̃1, ζ1)}

+βE0 {λ
′
1Dx−g(x0, x1, x2, ζ1)}+ E0 {λ

′
0Dxg(x−1, x0, x1, ζt)} = 0 (6)

E0g(x−1, x0, x1, ζ0) = 0. (7)

The notation Dx denotes the vector of partial derivatives of any functions

with respect to the elements of xt; likewise, Dx− and Dx+ denote derivatives

with respect to xt−1 and xt+1, respectively, while λ
′
t denotes the transpose

of the vector of Lagrange multipliers λt. Notice that since the generic in-

struments i1,t and i2,t are encompassed in Etg(xt−1, xt, xt+1, ζt) = 0 through

definitions of the form ij,t = x̃jt , where x̃
j
t is player j’s actual policy instru-

ment, taking derivatives with respect to i1,t and i2,t returns the Lagrange

multipliers associated with these definitions.

This formulation of the problem implies that period 0 is different from

every other period, because the choice of policies is not restricted by pre-

vious commitments. Although this system of equations can in general be

solved, the equilibrium functions will not be time-invariant. To avoid this

problem, we follow most of the literature in adopting the concept of op-

timality from a timeless perspective which is discussed in great detail in

Benigno and Woodford (2012).3 In short, this concept requires an initial

pre-commitment to suitably chosen values λ−1 at time 0 so that the first-

order conditions (4) to (5) apply to all t ≥ 0. Thus, the planner solves

a modified optimization problem with additional constraints for time 0.

Equivalently, the planner’s utility function in (2) is modified to reflect the

3The toolbox generates a Dynare model file and sets the predetermined values for the

Lagrange multipliers associated with the recursive planner(s) problem to the steady-state

values consistent with the timeless perspective. The model examples that follow are then

solved with second-order perturbation methods. However, the initial conditions for the

Lagrange multipliers associated with the planner’s problem could in principle be reset

to any desired value. Setting them to 0, would make them consistent with the original

problem (excluding the timeless perspective), which could then be solved, for instance,

with a shooting algorithm, including the one available in Dynare.
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initial commitments directly in the objective function

E0

∞∑

t=0

βt [ω1U1(x̃t−1, x̃t, ζt) + ω2U2(x̃t−1, x̃t, ζt)] + β−1λ−1g (x−2, x−1, x0) . (8)

The timeless perspective implies that the optimal deterministic steady

state (x̄, λ̄) needs to satisfy

∑

j=1,2

ωj{DxUj(¯̃x, ¯̃x, 0) + βDx−Uj(¯̃x, ¯̃x, 0)} (9)

+λ̄′
(
βDx−g(x̄, x̄, x̄, 0) +Dxg(x̄, x̄, x̄, 0) + β−1Dx+g(x̄, x̄, x̄, 0)

)
= 0

Etg(x̄, x̄, x̄, 0) = 0. (10)

The problem stated in equations (9) and (10) is linear in the Lagrange

multipliers. This feature can be exploited to obtain a reasonably accu-

rate initial guess for computing the steady-state values of the Lagrange

multipliers. For an initial guess of x̄ that satisfies the equations for the

private sector equilibrium (10), we use linear regressions to obtain initial

guesses for the values for the Lagrange multipliers. Re-interpreting equa-

tion (9), the dependent variables in our regressions are stacked in the vector

−
∑

j=1,2 ωj{DxUj(¯̃x, ¯̃x, 0)+βDx−Uj(¯̃x, ¯̃x, 0)}, the regression coefficients are

the Lagrange multipliers λ̄, and the explanatory variables are the matrix

(βDx−g(x̄, x̄, x̄, 0) +Dxg(x̄, x̄, x̄, 0) + β−1Dx+g(x̄, x̄, x̄, 0)). Our toolbox im-

plements these ideas to solve for the steady state numerically, relying on

quasi-Newton methods available in Matlab. As is familiar from the numer-

ical literature, in the presence of multiple solutions, different initial guesses

can be used to survey the possibility of multiple steady states. If multi-

ple steady states are identified, the optimal steady state must feature the

highest value for the objective of the cooperative planner.

Equations (4) and (5) can now be replaced by a local approximation

around the optimal steady state {x̄, λ̄} of desired order. The resulting

system of (higher-order) difference equations can be solved by standard

perturbation algorithms as further outlined in Section 2.5.
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2.3. Definition of Open-loop Nash Equilibrium

To define an open-loop Nash equilibrium, let {ij,t,−t∗}
∞
t=0 denote the

sequence of policy choices by player j before and after, but not including

period t∗. An open-loop Nash equilibrium is a sequence
{
i∗j,t
}∞
t=0

with the

property that for all t∗, i∗j,t∗ maximises player j′s objective function subject

to the structural equations of the economy for given sequences
{
i∗j,t,−t∗

}∞
t=0

and
{
i∗−j,t

}∞
t=0

, where
{
i∗−j,t

}∞
t=0

denotes the sequence of policy moves by all

players other than player j. Each player’s action is the best response to the

other players’ best responses.

With policymakers needing to specify a complete contingent plan at

time 0 for their respective instruments {ij,t}
∞
t=0 for j = [1, 2], under the

open-loop equilibrium concept, the problem can be reinterpreted as a static

game, allowing us to recast each player’s optimization problem as an optimal

control problem given the policies of the remaining players. As under the

static Nash equilibrium concept, player j restricts attention to his own

objective function, and the maximisation program is given by

max
{x̃t,ij,t}∞t=0

E0

∞∑

t=0

βtUj(x̃t−1, x̃t, ζt)

s.t.

Etg(xt−1, xt, xt+1, ζt) = 0

for given {i−j,t}
∞
t=0. (11)

The first-order conditions for each player are obtained from differentiating

the Lagrangian of the form

Lj,0 = E0

∞∑

t=0

βt
[
Uj(x̃t−1, x̃t, ζt) + λ′j,tg(xt−1, xt, xt+1, ζt)

]
(12)

for j = [1, 2]. Taking derivates of the Lj,0 with respect to the N − 1

choice variables (x̃t, ij,t), excluding the instrument of the other player, and

the N − 2 Lagrange multipliers λj,t associated with the N − 2 structural

relationships yields 2N − 3 conditions for each player.

Notice that the full set of 4N−6 equations includes the N−2 structural

equations twice. Since in equilibrium all players face the same values of the
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non-policy variables x̃t, an interior Nash equilibrium {x̃∗t , i
∗
1,t, i

∗
2,t, λ

∗
1,t, λ

∗
2,t}

∞
t=0

satisfies the following 3N − 4 conditions for t > 0

DxU1(x̃
∗
t−1, x̃

∗
t , ζt) + βEtDx−U1(x̃

∗
t , x̃

∗
t+1, ζt+1)

+βEt

{
λ∗

′

1,t+1Dx−g(x∗t , x
∗
t+1, x

∗
t+2, ζt+1)

}
+ Et

{
λ∗

′

1,tDxg(x
∗
t−1, x

∗
t , x

∗
t+1, ζt)

}

+β−1λ∗
′

1,t−1Dx+g(x∗t−2, x
∗
t−1, x

∗
t , ζt−1) = 0 (13)

DxU2(x̃
∗
t−1, x̃

∗
t , ζt) + βEtDx−U2(x̃

∗
t , x̃

∗
t+1, ζt+1)

+βEt

{
λ∗

′

2,t+1Dx−Etg(x
∗
t , x

∗
t+1, x

∗
t+2, ζt+1)

}
+ Et

{
λ∗

′

2,tDxg(x
∗
t−1, x

∗
t , x

∗
t+1, ζt)

}

+β−1λ∗
′

2,t−1Dx+g(x∗t−2, x
∗
t−1, x

∗
t , ζt−1) = 0 (14)

Etg(x
∗
t−1, x

∗
t , x

∗
t+1, ζt) = 0. (15)

In a fashion similar to the case of cooperation, the first-order conditions with

respect to i1,t and i2,t imply the restriction that the Lagrange multipliers

associated with the definition of the policy instruments are zero for all t ≥ 0.

Adopting the timeless perspective is again key to obtaining time-invariant

decision rules. The optimal response of each player given the policies of the

other player derived from the optimal control problem at time 0 is not nec-

essarily time consistent. Last, the deterministic steady state is found as for

the cooperative case by exploiting the linearity of the system (13)-(15) in

the 2N − 4 Lagrange multipliers.

2.4. Relationship to Linear-Quadratic Approach

An alternative approach to solve optimal policy problems uses LQ tech-

niques. In the case of a single decision maker, the LQ approach involves

finding a purely quadratic approximation of the policymaker’s objective

function which is then optimized subject to a linear approximation of the

structural equations of the model. Benigno and Woodford (2012) and

Levine et al. (2008) and Debortoli and Nunes (2006) discuss necessary and

sufficient conditions for a “correct LQ approximation” to the optimization

problem stated in equation (2) to exist. Adopting the timeless perspective

is shown to be one of the necessary conditions. In contrast to the early
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literature the approach followed here does not require the steady state of

the model to be efficient.

Appendix B, available online, shows that, to a first-order approximation,

the output of our toolbox is equivalent to that of the LQ approach. The

appendix also gives a roadmap for constructing the LQ matrices from the

output of our toolbox.

2.5. Solution Algorithms

For all the examples demonstrating the use of our toolbox, we apply a

perturbation approach to approximating the model solution. When report-

ing impulse response functions for alternative shocks, we use a first-order ap-

proximation. When reporting welfare results, we use a “true” second-order

approximation by following the pruning algorithm in Kim et al. (2008).

Pruning keeps the approximation constant at the second-order by avoiding

the accumulation of higher-order terms. Moreover, pruning ensures that

the Blanchard-Kahn conditions for stability and local uniqueness for the

first-order of approximation apply to the second-order, too.

To compute the welfare costs of suboptimal policies, we focus on differ-

ences in conditional welfare. This procedure is motivated by the fact that

the planners/players in our examples have objective functions that are con-

ditional on initial states. This focus on conditional welfare avoids spurious

welfare reversals that could otherwise occur.4

3. Monetary Policy in an Open-Economy Model

We first illustrate our toolbox for the workhorse two-country model of

monetary economics laid out in Benigno and Benigno (2006) and Corsetti

et al. (2010). The model features two countries, each specialized in the

production of one type of goods in different varieties. Each household pro-

duces exactly one variety and engages in monopolistic competition with all

4See Kim and Kim (2015) for examples of how conditional or unconditional objectives

can lead to different optimal policies.
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other households. Time-invariant subsidies offset the monopoly distortions

in the steady state. A household chooses its nominal price to maximize its

utility; as in Calvo (1983) the household can adjust the price at future dates

with a fixed probability. Export prices are set in the currency of the pro-

ducer. Shocks to technology affect the marginal product of labor, whereas

a markup shock influences how much prices exceed the marginal cost of

production. Finally, goods trade freely across borders and international

financial markets are frictionless and complete.

Benigno and Benigno (2006) and Corsetti et al. (2010) derive the optimal

monetary policy under commitment from the timeless perspective using the

LQ approach for the case of cooperation. Producer price inflation is the

policy instrument in both countries. Under cooperation, the objective is an

equally-weighted average of the welfare of the representative agents in the

two countries. When policymakers do not cooperate, strategic interaction

generally leads to welfare inferior outcomes: the failure to account for the

international spillovers of domestic policies causes foreign policymakers to

adopt policies that in turn negatively impact the domestic country in the

open-loop Nash equilibrium. Thus, there are gains from cooperation.

Online Appendix C covers the problems faced by the various agents in

the model and reports the conditions (equations C.12-C.36) that charac-

terize the private-sector equilibrium in the model of Corsetti et al. (2010)

which generalizes the one in Benigno and Benigno (2006) by allowing for

home bias in consumption. The appendix also shows how to cast the model

in a form suitable for the application of our toolbox.

To bolster confidence in our toolbox, we proceed by showing that it

reproduces the results derived by Benigno and Benigno (2006) and Corsetti

et al. (2010). We then turn to the novel aspects of our analysis. First,

we introduce checks to assess the optimality of the computed equilibria

under cooperation and in the open-loop Nash game. Second, we explore

the impact of the policy instrument choice for the gains from cooperation.

The literature has almost exclusively restricted the policy instrument to be
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producer price inflation in both countries. Expanding the strategy space to

include many more candidate instruments is easily accomplished with our

toolbox. Thus, we are in a position to set up an extension of the usual game

in the form of a meta-game that lets planners choose their instruments prior

to choosing optimal strategies for the selected instrument.

3.1. Optimal Policy with and without Cooperation

The output of our toolbox matches well-known results in the literature.

In the face of technology shocks, the welfare-maximising policy under co-

operation replicates the flexible price allocations for the two-country model

laid out above. As in closed economy models, the “divine coincidence” ap-

plies for “efficient shocks” – see Blanchard and Gaĺı (2007). Accordingly,

technology shocks move quantities and prices in the same direction rela-

tive to the flexible price economy and policymakers do not face a trade-off

between inflation and output gap stabilization.

By contrast, a markup shock, an “inefficient disturbance” poses more

complex choices for policymakers. As would be the case in an analogous

closed economy model, the cooperating policymakers cannot perfectly sta-

bilize the economy. In response to a positive markup shock, the output gap

turns negative, whereas inflation is positive.

If policymakers do not cooperate across borders, prices and quantities

will in general differ from those under cooperation. Each country has the

ability to influence the terms of trade through its monetary policy stance

and the open-loop Nash equilibrium does not replicate the flexible-price

allocations even for efficient shocks.5

Figures 1 and 2 confirm key findings of previous papers. They show

the responses to a positive technology shock and a markup shock under the

welfare-maximizing cooperative policy and under an open-loop Nash game.

5A necessary condition for the gains from cooperation to disappear in response to a

technology shock is that the intratemporal and intertemporal elasticities of substitution

be equal, which is not a feature of our calibration.
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As in Benigno and Benigno (2006) and Corsetti et al. (2010), Figure 1

shows that output price inflation is perfectly stabilized under the coopera-

tive policy, and that the output response coincides with its counterpart in a

flexible price model (not shown) for both countries after a technology shock.

In the open-loop Nash game, inflation and output gaps are not perfectly

stabilized. In that case, terms-of-trade movements affect the objectives of

the foreign policymaker, and those effects are not fully internalized by the

home policymaker.

Under the markup shock in Figure 2, neither policy completely stabilizes

output price inflation and the output gaps.6 As shown in Corsetti et al.

(2010), the home country’s real exchange rate appreciates and its terms of

trade improve by more under the open-loop Nash policies than under the

cooperative policy, resulting in larger spillover effects.7

Previous explorations of the gains from cooperation for monetary policy

in an open economy setting restricted the strategy space to certain families

of instrument rules. A prominent example is Obstfeld and Rogoff (2002).

We confirmed that if the two countries in our model were to use simple

interest rate rules responding to the lagged interest rate and to producer

price inflation, the resulting cooperative and Nash allocations would be very

similar to the optimal policies under cooperation and the open-loop Nash

game, respectively.8 This finding, however, is not general. It is driven by

6The efficient output level does not move at all in response to a markup shock. Hence,

movements in actual output are mirrored by movements in the output gap.
7To further assess the reliability of our toolbox, we confirmed that its output under

a first-order approximation coincides with the results produced by the LQ approach in

Benigno and Benigno (2006) and Corsetti et al. (2010). Online Appendix C.3 reconciles

the notation in Corsetti et al. (2010) with ours. The toolbox that accompanies this paper

provides codes that line up our results with those in Benigno and Benigno (2006) and

Corsetti et al. (2010).
8In the case of the Nash game, we identified the solution by alternatively optimizing

the parameters for the instrument rule (governing the weights on the lagged interest rate

and on inflation) of one policymaker keeping the other rule constant at the previously

optimized parameters. We stopped the iteration at a fixed point (consistent with the
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the apt choice of variables that enter the interest rate rule. Relatedly, when

the analysis of strategic interactions is dependent on the particular family of

interest rate rules considered, any results of this analysis could, in principle,

be overturned by including additional terms in the rules. The more general

policies automatically set up by our toolbox avoid this shortcoming.

3.2. Assessing the Optimality of Policy Choices

The optimal control literature that focuses on DSGE models typically

does not go beyond the derivation of first-order optimality conditions. An

exception is the work of Benigno and Woodford (2012), who derive second-

order conditions for an optimal control problem in the case of a single

planner under the LQ solution. Benigno and Woodford do not provide

analogous derivations for the more involved case of the open-loop Nash

problem considered here. Furthermore, the approach outlined in Benigno

and Woodford (2012) is not directly applicable to the verification of opti-

mality conditions under solutions from higher-order approximations even

for the case of a single policymaker.

Our approach to checking second-order conditions relies on taking per-

turbations of the optimal solution in the direction of arbitrary policy rules.

We verify that a convex combination of the optimal rule and an arbitrary

policy rule does not improve on the objective function of the policymaker.

This check applies both under cooperation, and under the open-loop Nash

solution.

Practically, we stack the necessary conditions for an equilibrium for

the optimal control problem (either for the cooperative or the competitive

case) with the conditions for an equilibrium for the analogous economy gov-

erned by the arbitrary policy rule. All the endogenous variables for the two

stacked models remain distinct in order to track numerically the optimal

policy for the particular instrument of choice. With this approach we can

definition of a Nash equilibrium). In all cases, the optimized simple rules featured a very

high weight on interest rate smoothing and responded strongly to inflation.
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check the payoffs associated with any convex combination of the optimal

policy and the arbitrary instrument rule (as long as the instrument rule

does not lead to a violation of the Blanchard-Kahn conditions). Optimality

requires intuitively that the value of the objective function of the policy-

maker be reduced if any non-zero weight is attached to the arbitrary policy

rule.

In performing this check, it is necessary to recognize that under the

timeless perspective, the objective function of the policymaker is modified

relative to the original objective to ensure time-invariant decision rules in

equilibrium.9 Our toolbox provides tools to stack the necessary conditions

for an equilibrium for our test, as well as to size the change in the objective

function consistent with the timeless perspective – essentially the value of

promises made by the policymaker before the initial period.

Figure 3 provides an example of this check. In the home country, we

consider a simple policy rule that sets producer price inflation to its steady-

state value. Letting the cooperative policy in each country be denoted by πt

and π∗
t , the alternative combination of policies sets producer price inflation

in the home country as πs
t = υsπ + (1− υs)πt, where the parameter υs

governs the convex combination. The foreign country follows πs∗
t = π∗

t .

The top panel plots the difference between conditional welfare under

the optimal cooperative policy and the suboptimal combination policy for

different values of υs. As indicated by the welfare difference being mini-

mized at υs = 0, the arbitrary rule considered cannot improve the optimal

cooperative policy.

The bottom panel of Figure 3 reports results analogous to those for the

top panel for the open-loop Nash game. In this case, we check whether the

home country can improve upon the optimal strategy in the Nash game by

9Recall that under the timeless perspective the utility function maximized by the

planner is given by equation (8). In particular, the switch to an alternative policy

could break previous commitments made under the timeless perspective and therefore

outperform the optimal policy if the welfare criterion is not taken to be (8).
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also assigning weight to an arbitrary policy rule. With the foreign country

setting the foreign inflation rate following the optimal strategy from the

open-loop Nash game, the home country prefers the (optimal) strategy from

the open-loop Nash game to any convex combination of that strategy and

the arbitrary rule. (Given symmetry, identical results obtain when the roles

of the home and foreign country are reversed.)

Though we fall short of providing a sufficient statistic for optimality

that is fully-analytical, our check can go a long way towards ensuring that

indeed the solution identified by the analytical first-order conditions has

key characteristics of the optimal solution.

3.3. Exploring the Strategy Space

Exploiting the flexibility of our toolbox, we can easily analyze how the

choice of instruments impacts the outcomes of the open-loop Nash game.

Suppose that at the first stage policymakers choose the policy instrument

from a given set of instruments. At the second stage of the game, each

policymaker chooses the optimal strategy given his choice of instrument,

taking the strategy of the other policymaker as given. To determine the

optimal choice of instruments, we need to recompute and solve the first-

order conditions of the open-loop Nash game described in equation (11) for

all possible combinations of the instruments included in the set of instru-

ments. An exhaustive exploration of the strategy space for the open-loop

Nash game has not been undertaken, thus far; the LQ approach followed in

Benigno and Benigno (2006) is too complex for this pursuit.

In principle, any variable that enters the model can be taken as instru-

ment in problem (11). For ease of presentation, we restrict attention to the

following five instruments: producer price inflation (πt), consumer price in-

flation (πC,t), real output (Yt), nominal output (PtYt), or the change in the

nominal exchange rate (et/et−1). In total, we allow twenty-five instrument

combinations, a number that strikes a balance between comprehensiveness

and ease of exposition. In this set of instruments we omitted the nominal

interest rate since we found that any combination of instruments involving
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the nominal interest rate leads to equilibrium indeterminacy in the open-

loop Nash game.

Table 1 reports the gains from cooperation for each of the twenty-five

combinations of instruments relative to the gains from cooperation under

the baseline specification of both countries choosing producer price infla-

tion as the instrument — the specification in Benigno and Benigno (2006),

Corsetti et al. (2010). Notice that, since we translate the gains from co-

operation in terms of a consumption subsidy levied in the home country,

Table 1 is not symmetric across the diagonal entries.10 Strikingly, the base-

line specification does not imply comparatively large or small gains from

cooperation; a finding that stresses how arbitrary this instrument choice

is. If both countries adopt real output as the instrument, the outcome of

the open-loop Nash game is much closer to the outcomes under coopera-

tion as evidenced by the much reduced welfare gains from cooperation in

this case. The largest gains from cooperation obtain if policymakers play

the open-loop Nash game using the growth rate of the nominal exchange

rate as instrument. In comparison to the best scenario of both countries

formulating their strategies in terms of real output, the welfare losses are

about 150 times bigger!

Table 1 focuses on overall welfare implications, but the first stage game

in which each country chooses its instrument may not result in the com-

bination of instruments associated with the most desirable outcomes. For

the instruments considered here, we confirmed that the home country max-

imizes its own expected utility by opting for real output as the instrument,

irrespective of the foreign country’s choice. Likewise, the foreign country

maximizes its expected utility by choosing real output as its policy instru-

ment. Thus, real output in both countries is a Nash equilibrium choice

at the first stage and leads to outcomes that are closest to those under

cooperation.

10Notice also that if we were to assign all the gains to the foreign country, the resulting

table would be the mirror image of Table 1.
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To shed additional light on the role of the policy instruments, Figure 4

plots the impulse responses after a markup shock in the home country when

both countries adopt 1) producer price inflation, 2) real output, and 3) the

change in the nominal exchange rate as the instrument. The response of the

real exchange rate can be viewed as a gauge of the international spillover

effects — not internalized by each policymaker. The smallest spillover ef-

fects, and consequently the smallest gains from cooperation occur when

real output is used as the instrument in both countries. Remarkably, when

real output is the policy instrument, the foreign country is almost insulated

from the shock similar to the case of full cooperation in Figure 2. When

policymakers use the change in the nominal exchange rate as instrument,

they cannot stabilize the economy as effectively as under the other two

instruments as exemplified by the larger response of output.

4. Macroprudential Regulation Model

Our toolbox can also be applied to policy games in a closed economy.

As an example, we lay out a policy game between a central bank and a

financial policymaker in the model of Gertler and Karadi (2011). That

model features two types of rigidities. Allocations are skewed by nominal

rigidities as well as by financial frictions. Non-financial firms are prevented

from issuing equity to households directly and have to rely on financial

intermediaries, referred to as “banks,” in order to raise funds. Due to

an agency problem, however, banks are limited in their ability to attract

deposits and issue credit to non-financial firms. Accordingly, credit is under-

supplied, and the reactions to shocks are amplified by a familiar financial-

accelerator mechanism.

The only, but crucial, modification that we introduce to the setup of

Gertler and Karadi (2011) is a lump-sum tax charged on banks and re-

bated to households. This is the powerful instrument used by the financial

policymaker in our policy game, while inflation is the instrument used by
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the central bank.11 Online Appendix D covers the problems faced by the

various agents in the model and reports the conditions (equations D.1-D.23)

that characterize the private-sector equilibrium. The appendix also reviews

the model calibration. In brief, we stay close the calibration choices in

Gertler and Karadi (2011) with two exceptions: 1) for ease of exposition,

we simplify the stochastic structure to include technology shocks only; and

2) we impose that the interest rates on deposits and on loans to non-financial

firms coincide in the steady state. This second exception implies that the

steady-state allocations are efficient and that distortions only open up in

response to shocks.

4.1. Analyzing the Gains from Cooperation

Figure 5 shows the responses to a contraction in technology under alter-

native policies. The shock considered brings down technology by 1 percent

in the first quarter. Subsequently, technology follows its auto-regressive

process.

We first consider the cooperative policy between the two policymakers

that maximize the utility of the representative household.12 The solid lines

in Figure 5 denote the responses for this case. The instruments are so

powerful that, for a technology shock, the policymakers replicate the allo-

cations that obtain in the analogous frictionless model. Due to the financial

friction, absent intervention from the financial policymaker, banks are un-

dercapitalized after the contractionary technology shock. An infusion of

cash into the banks (i.e., a negative bank tax) can prop up their equity po-

sition and expand lending next period. At the same time, nominal rigidities

call for a slight increase in the policy interest rate to prevent inflation from

rising inefficiently. Notice that the welfare-maximizing cooperative policy

completely stabilizes the expected spread between the bank return on in-

11Similar to the case of the two-country model, the open-loop Nash equilibrium is

indeterminate when the nominal interest rate is used as policy instrument.
12See equation D.1 in the appendix.
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vestment and its cost of funding (the loan rate EtR
s
t+1 minus the deposit

Rt) in all periods. The same policy also achieves full inflation stabilization.

With identical objectives for the two policymakers, the open-loop Nash

and cooperative policies coincide. However, in practice, different policy-

makers are assigned or pursue different objectives. We assume objectives

for the two policymakers that are biased versions of the preferences of the

representative agent. Apart from incorporating terms that reflect utility

from consumption, Ct, and leisure, Lt, the objective of the central bank

also incorporates a term that reflects an inflation stabilization bias (where

πt is inflation and π̄ is its steady state value):

Objcb = E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L1+χ
t

1 + χ
− µcb(πt − π̄)2

]
, (16)

and where the parameter µcb = 5 in our benchmark calibration governs the

extent of the inflation bias. Analogously, the objective of the macropruden-

tial policymaker is given by

Objmpr = E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L1+χ
t

1 + χ
(17)

−µmpr

(
(Rs

t − R̄s)− (Rt−1 − R̄)
)2]

,

where the parameter µmpr = 4 in our benchmark calibration governs the

extent of the bias towards stabilizing the interest rate spread for banks, the

term
(
(Rs

t − R̄s)− (Rt−1 − R̄)
)2
. For the baseline calibration, this particu-

lar formulation of biased objectives yields minor differences relative to the

welfare-maximizing cooperative policies (as quantified below).13

As can be seen from Figure 5, the differences between the cooperative

policies with biased and unbiased objectives are relatively minor. The bias

implies that the macroprudential policymaker is overzealous in stabilizing

13In analyzing the strategic interaction between fiscal and monetary policy Dixit and

Lambertini (2003) assume the central bank to be more aggressive about inflation sta-

bilization than the representative agent (and the fiscal authority) in order to obtain

different objective functions for the fiscal and monetary authorities. Our formulation

simplifies to the idea captured in Dixit and Lambertini (2003) for µmpr = 0.
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the interest rate spread for banks when the shock occurs. Conversely, the

central bank accepts small deviations from full stabilization of inflation.

Similarly, all other allocations remain close to their counterparts under the

welfare-maximizing cooperative policies with biased objectives.

By contrast, an open-loop Nash game with the same biased objectives

yields outcomes that are drastically different. To understand the extent of

these differences, consider the side effects of a policy that, in reaction to a

decline in technology, pushes up the equity positions of banks. Higher equity

positions allow banks to expand credit, push up investment, and boost

aggregate demand. In the presence of nominal rigidities, this expansion in

demand leads to higher resource utilization and higher marginal costs of

production, which cause inflation to rise. In reaction to the same decline

in technology, the central bank wants to curb the inflationary effects of the

shock and increase policy rates. However, higher policy rates bring up the

cost of funding for banks, and by reducing profitability ultimately reduce

the amount of funds available to support lending.

Accordingly, as the macroprudential policymaker recognizes that the

central bank intends to move rates up, he counteracts that action by re-

capitalizing banks even more (shown as a negative movement of the tax in

Figure 5). In turn, the central bank will have an incentive to increase policy

interest rates by more, realizing that the macroprudential policymaker will

step up the recapitalization of banks. Effectively, the different biases in the

objectives push each policymaker to discount the reverberations of his own

actions onto the objectives of the other policymaker. Ultimately, as shown

in Figure 5, the strategic interactions lead to an excessive recapitalization

of banks, unnecessarily aggressive tightening in monetary policy, and stark

deviations from the allocations under the welfare-maximizing cooperative

policies, which imply substantial welfare losses.

The top panel of Figure 6 confirms that the welfare losses from adopt-

ing biased objectives are small for cooperative policies for a broad range

of the parameters that govern the biases. The panel’s abscissae measure
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the parameter governing the bias of the macroprudential policymaker to-

wards stabilizing credit spreads. The panel’s ordinates measure the welfare

loss relative to allocations obtained from cooperative policies with unbiased

preferences (expressed in terms of a proportional consumption tax that

would leave the households indifferent between cooperative policies with

and without biased objectives). The chart shows multiple contours of the

tax schedule for different values of the parameter governing the bias of the

central bank towards stabilizing inflation.

By contrast, the bottom panel of Figure 6 shows that the welfare gains

from cooperative policies increase substantially with the bias towards spread

stabilization. With biased objectives, the welfare cost of open-loop Nash

policies relative to the welfare maximizing policies can be orders of magni-

tude higher than the losses from allowing for biased objectives under coop-

erative policies (relative to the case of unbiased objectives). Notice also that

these welfare costs are orders of magnitudes larger than the welfare costs

of business cycles reported in Lucas (2003). Notably, the cost of open-loop

Nash policies decreases in the bias of the central bank. This feature is easy

to understand. The optimal cooperative policy entails complete inflation

stabilization in response to technology shocks. Consequently, a more pro-

nounced bias towards inflation stabilization fosters allocations more closely

aligned with those of the cooperative policy.

4.2. Altruistic Objectives

To showcase the flexibility of our toolbox, we also consider how the

introduction of altruistic objectives that (at least partially) internalize the

bias of the other policymaker affect the open-loop Nash equilibrium. For

this exercise, we modify the objective functions of the two policymakers as

follows:

Objcb = E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L1+χ
t

1 + χ
(18)

−(1− ωcb)µcb(πt − π̄)2 − ωcbµmpr

(
(Rs

t − R̄s)− (Rt−1 − R̄)
)2]

,
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Objmpr = E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L1+χ
t

1 + χ
(19)

−(1− ωmpr)µmpr

(
(Rs

t − R̄s)− (Rt−1 − R̄)
)2

− ωmprµcb(πt − π̄)2
]
,

where the parameters ωcb and ωmpr govern the extent of the altruism of

each policymaker towards the bias of the other policymaker. In Figure 7,

we explore how variation in ωcb and ωmpr affect the welfare costs of open-

loop Nash games for an intermediate calibration of the bias parameters

that sets µcb = 10 and µmpr = 4. The top panel shows that the costs of

biased objectives remain small for all the alternative levels of the altruism

parameters considered. The bottom panel shows the welfare costs of the

open-loop Nash game relative to allocations from an unbiased cooperative

policy. Intuitively, we confirm that higher values of the altruism parameters

move the Nash allocations closer to the cooperative allocations.

Our results point to two implications for the design of institutional ar-

rangements. Bringing different regulatory functions under the same institu-

tion fosters the recognition of alternative objectives and avoids potentially

large welfare losses from strategic interactions. When this solution is polit-

ically infeasible, our results argue for devising altruistic objectives for each

policymaker as a way to minimize the welfare-reducing impact of strategic

behavior.

5. Conclusions

A popular approach to study the strategic interactions between policy-

makers involves the use of linear-quadratic techniques. Purely quadratic ob-

jective functions are derived for each policymaker; the first-order conditions

of the problem are then obtained by optimizing the quadratic objectives

subject to linear approximations of the structural economic relationships.

Unfortunately, this approach becomes laborious and potentially error-prone

for larger models, limiting the range of analysis.

A more direct approach is to obtain the first-order conditions of the

problem by using the nonlinear structural equations of the model and

26



the nonlinear objective functions assigned to the policymakers. Our tool-

box fully automates this procedure using symbolic differentiation. The

quadratic approximations to the policymakers’ objective functions can in

principle be retrieved from the output of our toolbox. Changes to an exist-

ing model such as allowing for cooperation between policymakers instead

of playing out an open-loop Nash game or changing the policy instruments

assigned to the policymakers imply a new set of first-order conditions that

is easily generated by our toolbox.

We apply the toolbox introduced in this paper to the well-known case of

monetary policy coordination in a two-country model. The flexibility of our

toolbox allows us to easily replicate the results in the literature and move

beyond them. We show that alternative instruments change the strategy

space. In particular, if players were allowed a choice of instruments before

a choice of strategies, they would favor real output over producer price

inflation, the instrument typically considered by studies of monetary policy

coordination.

We also apply the toolbox to address strategic interactions between a

macroprudential policymaker and a central bank in a model with finan-

cial frictions. The analysis points to potentially large welfare losses stem-

ming from the lack of cooperation between policymakers, even if technology

shocks are the only source of fluctuations.
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Table 1: Welfare Gains from Cooperation under Alternative Instrument Choices

Strategy π∗

t π∗

C,t Y ∗

t P ∗

t Y
∗

t
e∗t

e∗
t−1

πt 1.00 3.14 0.65 1.39 3.64

πC,t 3.15 21.61 2.79 5.39 27.00

Yt 0.65 2.79 0.25 1.07 3.27

PtYt 1.39 5.39 1.07 2.10 6.38

et
et−1

3.65 27.00 3.27 6.39 36.78

Note: This table reports the welfare gains from cooperation for each combination of

instruments used by the two policymakers in the open-loop Nash game. The welfare gains

in the table are expressed relative to the gains under the baseline case of each policymaker

using producer price inflation (πt) as the instrument. Hence, by construction, the entry

corresponding to πt and π
∗

t is 1.00. The other instruments considered are: consumption

price inflation (πC,t), real output (Yt), nominal output (PtYt), and the change in the

nominal exchange rate ( et
et−1

). Strikingly, when the change in the nominal exchange rate

is the instrument in each country, the gains from cooperation are 36.78 times the gains

from cooperation under the baseline case. (Notice that et =
1

e∗t
.)
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Figure 1: Cooperative and Open-loop Nash Policies in the Open Economy Model: Re-

sponses to a Technology Shock
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Notes: The figure plots the transition dynamics of the two economies after a
one-standard deviation increase in technology in the home country. The two lines show
the responses under full commitment with cooperation (Cooperative Policy) and
without cooperation (Open-Loop Nash), when policymakers use output price inflation
in their respective country as the policy instrument.
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Figure 2: Cooperative and Open-loop Nash Policies in the Open Economy Model: Re-

sponses to a Markup Shock
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Notes: The figure plots the transition dynamics of the two economies after a
one-standard deviation increase in the price markup in the home country. The two
lines show the responses under full commitment with cooperation (Cooperative Policy)
and without cooperation (Open-Loop Nash), when policymakers use output price
inflation in their respective country as the policy instrument.
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Figure 3: Assessing Optimality of Policy Choices
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Notes: The top panel plots the difference between conditional welfare under the
optimal cooperative policy and a suboptimal policy that assigns weight on both an
arbitrary policy rule and the optimal cooperative policy. With the instruments under
the cooperative policy chosen as πt and π

∗

t , the suboptimal policy sets producer price
inflation in the home country to follow πs

t = υsπ + (1− υs)πt and to follow πs∗
t = π∗

t in
the foreign country. The welfare difference being minimized at υs = 0 implies that the
arbitrary rule under consideration cannot improve upon the optimal cooperative policy.
The bottom panel reports the results from a similar exercise in the open-loop Nash
game by asking whether the home country can improve upon the optimal strategy for
the Nash game by assigning weight to the prescription from an arbitrary policy rule.
Assuming that the foreign country sets the foreign inflation rate in accordance with its
strategy in the open-loop Nash game, the home country prefers the strategy from the
open-loop Nash game to any mixture that assigns positive weight to the arbitrary rule
under consideration. Similar results obtain when the roles of the home and foreign
country are reversed.
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Figure 4: Strategy-space under Open-loop Nash policies in the Open Economy Model:

Responses to a Markup Shock
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Notes: The figure plots the transition dynamics of the three economies after a
one-standard deviation increase in markups in the home country. The three lines show
the responses for the open-loop Nash game when policymakers use output price
inflation, changes in the nominal exchange rate, and real output as instrument,
respectively.
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Figure 5: Cooperative and Open-loop Nash Policies in the Macroprudential Regulation

Model: Responses to a Technology Shock

2 4 6 8 10
-5

0

5

P
er

ce
nt

 D
ev

. f
ro

m
 S

S 1. Investment

Cooperation, no bias
Cooperation, biased objectives
Open-loop Nash

2 4 6 8 10
-1.4

-1.2

-1

-0.8

-0.6

-0.4

P
er

ce
nt

 D
ev

. f
ro

m
 S

S 2. Consumption

2 4 6 8 10
-5

0

5

P
er

ce
nt

 D
ev

. f
ro

m
 S

S 3. Price of Capital

2 4 6 8 10

-1

0

1

P
er

ce
nt

 D
ev

. f
ro

m
 S

S 4. Output

2 4 6 8 10

-20

-10

0

P
P

t. 
D

ev
. f

ro
m

 S
S

5. Spread of Loan Rate 
 over Deposit Rate (AR)

2 4 6 8 10
-20

0

20

40

60

P
P

t. 
D

ev
. f

ro
m

 S
S

6. Policy Interest Rate (AR)

2 4 6 8 10

Quarters

-2

-1

0

P
P

t. 
D

ev
. f

ro
m

 S
S

7. Inflation (AR)

2 4 6 8 10

Quarters

-40

-20

0

P
er

ce
nt

 D
ev

. f
ro

m
 S

S 8. Bank Tax/Subsidy (output share)

Notes: The figure plots the transition dynamics of the economy after a one-standard
deviation decline in technology. The central bank uses inflation as its instrument and
the macroprudential policymaker uses the tax (if positive, subsidy, if negative) on bank
capital as instrument. The three lines show the responses for the cases of cooperation
with unbiased policy preferences, cooperation with biased policy preferences, and
without cooperation for biased policy preferences, respectively.
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Figure 6: Welfare Implications of Biased Objectives
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Notes: The figure plots the welfare costs as a function of the stabilization bias of the
macroprudential policymaker, µmpr. The welfare gains of going from a given model to
the model without stabilization bias and cooperation is expressed as a consumption
equivalent variation. The top panel shows the welfare costs of having biased objectives
for the policymakers (using the unbiased objectives as welfare metric). The bottom
panel plots the welfare costs of open-loop Nash policies if policymakers have biased
objectives, relative to cooperative polices for the same biased objectives
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Figure 7: Welfare Implications of Biased but Altruistic Objectives
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Notes: The figure plots the welfare costs as a function of the altruism parameter for the
macroprudential policymaker, ωmpr. The welfare gains of going from a given model to
the model without stabilization bias and cooperation is expressed as a consumption
equivalent variation. The top panel shows the welfare costs of having biased objectives
for the policymakers (using the unbiased objectives as welfare metric). The bottom
panel plots the welfare costs of open-loop Nash policies if policymakers have biased
objectives relative to optimal cooperative policies from unbiased objectives.
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Online Appendix: Macroeconomic Policy Games

Appendix A. Description of Codes

The codes underlying this paper can be downloaded from

https://sites.google.com/site/martinbodenstein/ and from

http://www.lguerrieri.com/games code.zip.

The zipped package includes five folders:

1. nash ramsey toolbox contains the codes for our toolbox,

2. plot support contains plotting routines,

3. BBCDL model contains the codes for the two-country model,

4. GK model contains the codes for the macroprudential regulation model,

5. LQ BBCDL model contains the linear quadratic model by Corsetti et al. (2010) described

in Appendix C.3.

Appendix A.1. Toolbox

The toolbox extends the functionality of Dynare (which needs to be installed sepa-

rately). We have verified that our toolbox is compatible with Dynare 4.4.2 and earlier

versions on Mac, Windows, and Linux platforms. Before attempting to run the examples

in BBCDL model, GK model, LQ BBCDL model the paths in setpathdynare4.m need to reflect

the local setup. The toolbox also requires access to the Matlab Symbolic Math Toolbox.

The folder nash ramsey toolbox contains the codes of our toolbox. In order to generate the

first-order conditions that characterize the optimal policies with and without cooperation

using our toolbox, the user has to provide a Dynare-formatted model file. In addition to the

structural equations derived from optimal behavior of households and firms, the file needs to

specify the utility functions of the policymakers and an arbitrary description of the relevant

policy rules (e.g., Taylor-style instrument rules in a two-country monetary model).14 This

input file is then used to generate an output file that contains the symbolic derivatives of

the Lagrangian functions described in equation (3) for the Ramsey case and equation (12)

for the open-loop Nash game. We first describe how to apply the toolbox; then we describe

in more detail the key scripts of the toolbox.

14A primer on Dynare syntax can be found http://www.dynare.org/wp-repo/dynarewp001.pdf.
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Appendix A.1.1. Using the Toolbox

Using our toolbox requires the user to follow just a few of conventions. Through the rest

of this section, we refer to the original Dynare-formatted model code as example.mod.

In example.mod:

1. Break the var block into two var blocks so that the first block contains Util1, Util2,

and all endogenous variables and the second block contains all exogenous variables

(the shocks). Insert the line // Endogenous variables or // Exogenous variables

before each block, as appropriate.

2. If parameter values are set directly in example.mod, remove them and save them as a

separate script with the name example paramfile.m.

3. In the model block, before the policy rule for each player, insert the line // Policy

Rule, agent 1 or // Policy Rule, agent 2, as appropriate.

4. If the steady-state values for the original N endogenous variables are set in the initval

block delete the initval block and save the steady-state values for endogenous vari-

ables as a script in the same folder under the name example ss defs.m.

5. Collect the equations describing the paths of exogenous variables at the end of the

model block, after all the structural equations.

6. Define the variables Util1 and Util2 in the var and add the objective functions of

the policymakers in the model block. The equations defining Util1 and Util2 should

be declared in the ‘model’ block as Util1 = ...; and Util2 = ...; and placed just

above the block of the exogenous variables. [N.B.: This is a change from the first

version of the toolbox introduced to facilitate the comparison of conditional welfare

across models.]

Create a MATLAB function with the name example steadystate.m in the same folder.

Dynare will call this program to compute the steady state of the model. The structure of

example steadystate.m should follow this template:

function [ys,check] = example steadystate(junk,ys)

global M

check = 0;

3
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%% assign parameter values

example paramfile

%% assign steady-state values

example ss defs

%% send parameters and steady states to dynare

nparams = size(M .param names,1);

for icount = 1:nparams

eval([’M .params(icount) = ’,M .param names(icount,:),’;’])

end

nvars = M .endo nbr;

ys = zeros(nvars,1);

for i indx = 1:nvars

eval([’ys(i indx)=’,M .endo names(i indx,:),’;’])

end

The file example steadystate.m first calls the scripts example paramfile.m to set the pa-

rameter values; calling example ss defs.m assigns the steady-state values of the endogenous

variables in the model. The values are saved in the vectors M .params and ys, respectively,

in order to be passed to Dynare.

Now the model can be processed to create the desired output files by calling the script

convertmodfiles which is described in the next section.

Appendix A.1.2. Description of Toolbox Programs

The first-order conditions to the various policy problems associated with the model file

example.mod are created by executing the script convertmodfiles.m. For the open-loop

Nash game, calling

convertmodfiles(‘example’,‘nash’,‘instrument1’,‘instrument2’)

4
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generates the necessary output files example nash.mod, example nash steadystate.m, example nash ss defs.m

and example nash paramfile.m.15

The inputs into convertmodfiles.m are:

• infilename: a string containing the name of the Dynare file containing the model

we want to analyze. Here, we set infilename = example, although example.mod also

works.

• policy problem: a string that must be ramsey, nash, or one agent ramsey

– If policy problem = ramsey, then convertmodfiles.m will output the model

equations for the cooperative optimal policy (Ramsey).

– If policy problem = nash, then convertmodfiles.m will output the model equa-

tions for the open-loop Nash game.

– If policy problem = one agent ramsey, then one of the two players follows the

optimal policy given that the other player will follow the arbitrary policy rule

that was specified in the original file example.mod.

• instrument1: a string, giving the name of the instrument variable in the model for

the first player. If policy problem = one agent ramsey, this is the instrument used

by the one player choosing the optimal policy for an arbitrary policy function of the

other player.

• instrument2: a string, giving the name of the instrument for the second agent. If

policy problem = one agent ramsey, this should be ‘1’ or ‘2’, representing the

one player choosing the policy optimally.

Executing the file convertmodfiles.m calls the following sequence of scripts:

1. get aux.m

• replaces lagged endogenous variables in the model block with auxiliary variables,

which are also inserted under the var block as endogenous variables. Given en-

dogenous variables var 1,...,var K entering the structural equations or the util-

ity functions with their lagged values, get aux.m adds var 1lag, ...,var Klag

15The default names of the output files can be changed in to also reflect the names of the instruments.
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to the end of the block of endogenous variables in the var block, and adds the

equations

var 1lag = var 1(-1);...var nlag = var n(-1);

in the ‘model’ block.

• given policy problem, the script adds appropriate policy variables (instr1 and

instr2), parameters (omega welf1, omega welf2, beta), and welfare definitions

to the Dynare model.The new temporary Dynare file is saved as example aux.mod.

• edits the existing files example paramfile.m, example steadystate.m, and example ss defs.m

to account for the auxiliary and policy variables, parameters, and equations. The

new files are named example aux paramfile.m, example aux steadystate.m,

and example aux ss defs.m, respectively.

2. then, depending on the choice of policy problem.m,

• get nash.m followed by make ss nash if policy problem = nash to generate the

first order conditions of the problem,

• get ramsey.m followed by make ss ramsey if policy problem = ramsey to gen-

erate the first-order conditions of the problem,

• or, finally, get one agent ramsey.m followed by make ss one agent ramsey if

policy problem = ramsey to generate the first order conditions of the problem.

We restrict the detailed description to the case of policy problem = nash. The pro-

gram get nash.m, builds on the program get ramsey.m originally provided by Lopez-Salido

and Levin (2004) to find optimal Ramsey policies.16 Taking the input example aux.mod,

get nash.m outputs

1. example nash.mod which contains the first order conditions of the players and removes

the arbitrary policy rules from the model.

2. example nash lmss.m which contains the subset of first order conditions that is linear

in the Lagrange multipliers evaluated in the steady state.

16Our version of get ramsey.m extends the version distributed by Lopez-Salido and Levin (2004) by

allowing lagged dependent variables in the objective functions.
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Next, the file make ss nash.m creates four auxiliary files

• example nash steadystate.m,

• guess example nash steadystate.m,

• example nash ss defs.m,

• example nash paramfile.m.

As we have introduced additional endogenous variables, the steady-state values of the ex-

isting endogenous variables may have changed and the steady-state values of the new en-

dogenous variables are unspecified. example nash steadystate.m uses the values provided

by example nash ss defs.m and example nash lmss.m to find the new steady-state values

via guess example nash steadystate.m. To facilitate computation of the new steady state

example nash steadystate.m allows for the choice of different algorithms. example nash paramfile.m

sets the same parameter values as example paramfile.m. In addition, the policy parameters

are assigned the default values

omega welf1 = 0.5

omega welf2 = 0.5

nbeta = 0.99.

The toolbox includes additional programs that may be of use to researchers:

• add welfare vars.m augments the Dynare model files that have been set up with

period utility defined by Util1 and Util2 to define the variables Welf1 and Welf2

(cumulative welfare variables for each agent) along with Util and Welf (joint utility

and welfare variables using welfare weights omega welf1 and omega welf2).

• edit shocks.m takes in a character matrix of shocks (or the strings ‘all’ or ‘none’)

and turns on those shocks in all Dynare model files in the current folder. This is helpful

when running a program which compares the effects of different groups of shocks in a

model.

• add shadow economy.m takes in four inputs orig modfile, ramsey type, instrument1,

instrument2. orig modfile is the name of the original model file that characterizes

7
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the decentralized equilibrium (i.e., example in the description above). ramsey type is

type of equilibrium desired, either nash, ramsey, or one agent ramsey. instrument1

and instrument2 govern the instruments used in the implementation of the policies un-

der the equilibrium type chosen. This routine produces a single Dynare .mod file that

defines two distinct models. One model is a copy of the model in the original .mod file.

The other model is taken from the output of the function convertmodelfiles which

needs to be called with analogous input arguments prior to invoking add shadow economy.

To keep track of two stacked economies in the same file, the names of the endogenous

variables for the original model are changed. The prefix shadow is appended to the

names of those variables. Crucially, the innovations to the exogenous variables are

imposed to be common across the two models. This setup has multiple purposes:

1. It facilitates the exploration of instrument rules that respond to variables in both

models. Crucially, these rules, could be made to converge to the policy rules to

the optimal cooperative policies or to the open-loop Nash policies (or any linear

combination of an arbitrary instrument rule and of the optimal rules).

2. It facilitates the exploration of the costs of suboptimal rules. For this purpose,

the cooperative or Nash .mod files created by convertmodelfiles need to be

augmented with an extra variable capturing the value of commitment to a policy

under the timeless perspective. This variable is automatically produced by our

routines if convertmodelfiles is invoked with an additional argument set to 1.

3. This routine can also be used to check second-order conditions in line with the

method proposed in the main body of the paper.

Appendix A.2. Replication Codes

The replication codes for Figures 1, 2, and 4 are stored in the folder BBCDL model excl2ndorder.

The codes for Figure 3 are stored in the folder BBCDL model 2ndorder. The codes for Figures

5 and 6 are provided in the folder GK model. The codes for Figure 7 are stored in the folder

GK model with altruism.

Finally, the folder LQ BBCDL model contains the model described in Appendix C.3. The

file call LQBBCDL computes the impulse responses to a markup shock for the linear quadratic

model stored in LQBBCDL.mod and compares them to those derived from the toolbox output

BBCDLmodelcomp ramsey c1pid c2pid.mod.

8
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Appendix A.2.1. Open Economy Model

BBDCLmodelcomp.mod in the folder BBCDL model excl2ndorder is the Dynare file con-

taining the original model described in equations (C.12) to (C.36) with variables to be

log-linearized where appropriate, i.e., the variables are surrounded by the expression exp().

This model file is ready for being processed by our toolbox. In particular, notice

• the separation of variables into the two blocks of // Endogenous variables and //

Exogenous variables,

• the definition of the period-utility functions of the two policymakers as Util1 and

Util2,

• the labelling of the policy rules by // Policy Rule,

• the ordering of putting the equations for the exogenous shock processes at the end of

the model block.

Variables for the home country carry the prefix c1; variables for the foreign carry the prefix

c2.

The model file is accompanied by three user-provided Matlab m-files

• BBCDLmodelcomp paramfile sets the parameter values (via calling the parameter file

stored in the folder parameterfiles labeled paramfile BB which is common across

all model files),

• BBCDLmodelcomp ss defs assigns the steady-state values to all variables,

• BBCDLmodelcomp steadystate which, after calling the previous two files, sends the

parameter and steady-state values to Dynare.

All relevant files for the Ramsey and the open-loop Nash problem are created by calling

convertmodfiles via CREATE RAMSEY AND NASH in the folder BBCDL model. The first line

in this script augments the Matlab path to include our toolbox. Output price inflation is

denoted by c1pid and c2pid for countries 1 and 2, respectively. Consumer price inflation

is labeled c1dcore and c2dcore. The files associated with any specific model carry the

instrument labels in the file name.
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For example, the files needed to compute the solution to the Nash problem using output

price inflation as instruments are

• BBCDLmodelcomp nash c1pid c2pid.mod containing the final model,

• BBCDLmodelcomp nash c1pid c2pid paramfile setting parameters by calling paramfile BB

and assigning values to omega welf1, omega welf2, nbeta,

• BBCDLmodelcomp nash c1pid c2pid steadystate generating the new steady state,

• guess BBCDLmodelcomp nash c1pid c2pid steadystate computing the steady state

using the steady state of BBCDLmodelcomp.mod as starting guess,

• BBCDLmodelcomp nash c1pid c2pid ss defs initializing guess for steady-state values

of structural variables and via

• BBCDLmodelcomp nash c1pid c2pid lmss initialising the steady-state guess for the La-

grange multipliers.

Notice, that our toolbox assigns the default values

omega welf1 = 0.5

omega welf2 = 0.5

nbeta = 0.99

to the policy parameters. The steady state of the new model may need to be computed nu-

merically. BBCDLmodelcomp nash c1pid c2pid steadystate allows for different algorithms

to be employed by choosing the desired element of algo in the options variable.

Appendix A.2.2. Macroprudential Regulation Model

rbcb monprud.mod is the Dynare file containing the original model with biased objectives

described in equations (D.28) to (D.53).17 This model file is ready for being processed by

our toolbox. In particular, notice

17An additional model file with unbiased objectives is provided under the name rbcb monprud nobias.mod.

10
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• the separation of variables into the two blocks of // Endogenous variables and //

Exogenous variables,

• the definition of the period-utility functions of the two policymakers as Util1 and

Util2,

• the labelling of the policy rules by // Policy Rule,

• the ordering of putting the equations for the exogenous shock processes at the end of

the model block.

The model file is accompanied by three user-provided Matlab m-files

• rbcb monprud paramfile sets the parameter values (via calling the parameter files in

the folder parameterfiles),

• rbcb monprud ss defs assigns the steady-state values to all variables,

• rbcb monprud steadystate which, after calling the previous two files, sends the pa-

rameter and steady-state values to Dynare.

All relevant files for the Ramsey and the open-loop Nash problem are created by calling

convertmodfiles via CREATE RAMSEY AND NASH located in the folder GK model. The first

line in this script augments the Matlab path to include our toolbox. Inflation is denoted by

infl and the bank transfer by bt. The files associated with any specific model carry the

instrument labels in the file name.

For example, the files needed to compute the solution to the Nash problem using output

price inflation as instruments are

• rbcb monprud nash infl bt.mod containing the final model,

• rbcb monprud nash infl bt paramfile setting parameters by calling the parame-

ter files located in the folder parameterfiles and assigning values to omega welf1,

omega welf2, nbeta,

• rbcb monprud nash infl bt steadystate generating the new steady state,

• guess rbcb monprud nash infl bt steadystate recomputing the steady state using

the steady state of rbcb monprud.mod as starting guess,

11
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• rbcb monprud nash infl bt ss defs initializing guess for steady-state values of struc-

tural variables and via

• rbcb monprud nash infl bt lmss initialising the steady-state guess for the Lagrange

multipliers.

Notice, that our toolbox assigns the default values

omega welf1 = 0.5

omega welf2 = 0.5

nbeta = 0.99

to the policy parameters. Furthermore, the steady state of the new model may need to

be computed numerically. rbcb monprud nash infl bt steadystate allows for different

algorithms to be employed by choosing the desired element of algo in the options variable.

12
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Appendix B. Relationship to Linear-Quadratic Approach

To see the connection between the LQ approach and the approach followed in our toolbox,

assume we were interested in the solution to the problem stated in Equation (2) obtained

from the linear approximation of the first order conditions (4) to (5) around the optimal

steady state. Under the timeless perspective, the first order conditions with respect to the

endogenous variables can then be approximated by

∑

j=1,2

ωj

{
D2

xx−Ūj x̂t−1 +
[
D2

xxŪj + βD2
x−x−Ūj

]
x̂t + βD2

x−xŪjEtx̂t+1

}

+
∑

j=1,2

ωj

{
D2

xζŪjζt + βD2
x−ζŪjEtζt+1

}

+βλ̄
{
D2

x−x− ḡx̂t +D2
x−xḡEtx̂t+1 +D2

x−x+ ḡEtx̂t+2 +D2
x−ζ ḡEtζt+1

}

+λ̄
{
D2

xx− ḡx̂t−1 +D2
xxḡx̂t +D2

xx+ ḡEtx̂t+1 +D2
xζ ḡζt

}

+β−1λ̄
{
D2

x+x− ḡx̂t−2 +D2
x+xḡx̂t−1 +D2

x+x+ ḡx̂t +D2
x+ζ ḡζt−1

}

+βEtDx− ḡ′λ̂t+1 +Dxḡ
′λ̂t + β−1Dx+ ḡ′λ̂t−1 = 0. (B.1)

Note that we have augmented the partial derivatives of the utility functionals to include

derivatives with respect to the instrument variables i1,t and i2,t — which are zero — to

simplify notation. The notation D2
xx− marks the matrix of second derivatives of a function

with respect to x and x−. Ūj and ḡ is used as short-hand to indicate that a function (or its

partial derivatives) is evaluated at the steady-state values {x̄, λ̄}. ‘Hatted’ variables refer to

the deviation of the original variable from its steady-state value. Regrouping terms delivers

λ̄
[
β−1D2

x+x− ḡ
]
x̂t−2 +

{
∑

j=1,2

ωjD
2
xx−Ūj + λ̄

[
D2

xx− ḡ + β−1D2
x+xḡ

]
}
x̂t−1

+

{
∑

j=1,2

ωj

[
D2

xxŪj + βD2
x−x−Ūj

]
+ λ̄

[
D2

xxḡ + βD2
x−x− ḡ + β−1D2

x+x+ ḡ
]
}
x̂t

+

{
∑

j=1,2

ωjβD
2
xx−Ūj + βλ̄

[
D2

xx− ḡ + β−1D2
x+xḡ

]
}′

Etx̂t+1

+β2λ̄
[
β−1D2

x+x− ḡ
]′
Etx̂t+2 +

{
∑

j=1,2

ωjβD
2
x−ζŪj + βλ̄D2

x−ζ ḡ

}
Etζt+1

+

{
∑

j=1,2

ωjD
2
xζŪj + λ̄D2

xζ ḡ

}
ζt + β−1λ̄D2

x+ζ ḡζt−1

+βEtDx− ḡ′λ̂t+1 +Dxḡ
′λ̂t + β−1Dx+ ḡ′λ̂t−1 = 0 (B.2)
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which coincides with the first order conditions of the following LQ problem

max
{x̂t}∞t=0

E0

∞∑

t=0

βt

[
1

2
x̂′tA(L)x̂t + x̂′tB(L)ζt+1

]

s.t.

EtC(L)x̂t+1 +D(L)ζt = 0

C(L)x̂0 = d0 (B.3)

where

A2 = λ̄
[
β−1D2

x+x− ḡ
]

A1 =
∑

j=1,2

ωjD
2
xx−Ūj + λ̄

[
D2

xx− ḡ + β−1D2
x+xḡ

]

A0 =
∑

j=1,2

ωj

[
D2

xxŪj + βD2
x−x−Ūj

]
+ λ̄

[
D2

xxḡ + βD2
x−x− ḡ + β−1D2

x+x+ ḡ
]

A(L) = A0 + A1L+ A2L
2

B(L) =

{
∑

j=1,2

ωjβD
2
x−ζŪj + βλ̄D2

x−ζ ḡ

}
+

{
∑

j=1,2

ωjD
2
xζŪj + λ̄D2

xζ ḡ

}
L

+β−1λ̄D2
x+ζL

2

C(L) = Dx+ ḡ +DxḡL+Dx− ḡL2

D(L) = Dζ ḡ.

The constraint C(L)x̂0 = d0 is added to implement the timeless perspective by an appropriate

choice of d0. Benigno and Woodford (2012) refer to the program in equation (B.3) as the

“correct LQ approximation” and they show how to derive the correct LQ program directly

from the original problem stated in (2) rather than going through the first order conditions

associated with (2), which is the approach followed by Levine et al. (2008). Using the above

definitions, it is easy to compute the matrices for the LQ problem from our toolbox output

numerically. Hence, to a first order approximation the output of our toolbox is equivalent

to that of the LQ approach.
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Appendix C. Open Economy Model

We first illustrate our toolbox for a two-country monetary model that closely follows

Benigno and Benigno (2006) and Corsetti et al. (2010). These authors characterize the

optimal monetary policies both with and without cooperation between two central banks in

dynamic general equilibrium models with sticky prices. To this end, they derive the true

linear quadratic approximation of the model. As discussed in Section 2.4, for given choice of

policy instruments and strategies of the players, the linear-quadratic approach delivers the

same output as our toolbox if we take a linear approximation of the first-order conditions of

the two central banks around the deterministic steady state.

Appendix C.1. Model Environment

The two countries are equal in size and symmetric in their economic structure. We only

describe the economy of country 1 in detail.

Appendix C.1.1. Households

Following Benigno and Benigno (2006) and Corsetti et al. (2010) each country is popu-

lated by a continuum of households. Each of them engages in the production of a specific

good for which the household uses its own labor as the sole input. The good produced by

household h carries the index f . Before describing the production and pricing of goods in

detail, we first set up the household’s optimization problem for given labor and production

choices, Lt(h) and Yt(f) with financial markets being complete at the domestic and the

international level

max
{Ct(h),BD,t+1(h),BF,t+1(h)}∞t=0

E0

∞∑

t=0

βt

(
Ct(h)

1−σ

1− σ
− χ0

Lt(h)
1+χ

1 + χ

)

s.t.

PC,tCt(h) +

∫

S

QD,tBD,t+1(h) +

∫

S

etQF,tBF,t+1(h) + Tt(h)

= Pt(f)Yt(f) +BD,t(h) + etBF,t(h). (C.1)

Household f uses its income on consumption, PC,tCt(h), on the acquisition of domestic

bonds in domestic currency,
∫
S
QD,tBD,t+1(h), and foreign bonds priced in foreign currency,

∫
S
etQF,tBF,t+1(h), and on lump-sum taxes, Tt(h). The nominal exchange rate is denoted by

et. Income is derived from selling its product, Pt(f)Yt(f), as well as the payoffs from foreign

and domestic bonds, QF,tBF,t(h) +QD,tBD,t(h).
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Consumption utility is derived from consuming a domestic good, CD,t(h), and a foreign

good, CM,t(h), according to

Ct(h) =
(
ω

ρc
1+ρc
c CD,t(h)

1

1+ρc + (1− ωc)
ρc

1+ρc CM,t(h)
1

1+ρc

)1+ρc

, (C.2)

with the goods price in domestic currency being denoted by Pt and PM,t, respectively. Under

the assumption of producer currency pricing, the law of one price holds absent transportation

costs and the price of the imported foreign good equals the price of the foreign good in

the foreign country adjusted by the nominal exchange rate, PM,t = etP
∗
t . The price of

the final consumption good, PC,t, is obtained from minimizing the costs of obtaining final

consumption, Ct(h), subject to the constraint (C.2).

Appendix C.1.2. Production of Final Goods

Competitive producers of the domestic good, Yt, aggregate a variety of intermediate

goods, Yt(f), produced by the home country’s households using the production technology

Yt =

[∫ 1

0

Yt(f)
1

1+νp df

]1+νp

. (C.3)

Profit maximization delivers the well-known result for the price of the domestic good, Pt,

Pt =

[∫ 1

0

Pt(f)
− 1

νp df

]−νp

, (C.4)

and the demand function for each variety Yt(f)

Yt(f) =

[
Pt(f)

Pt

]− 1+νp
νp

Yt. (C.5)

Appendix C.1.3. Production by Households

Each household produces exactly one variety Yt(f) and engages in monopolistic compe-

tition with all other households. A household chooses its price so as to maximize its utility.

Following Calvo (1983) the probability of adjusting prices in a given period is 1− ξp.

Assuming household h uses a linear technology to produce good f , it is

Yt(f) = (ezt)
χ

1+χ Lt(h), (C.6)

where the country-wide technology shock, zt, evolves according to zt = ρzzt−1 + σzεz,t. The
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production and pricing problem of household h can be stated as

max
Pt(f),{Yt+i(f)}∞t=0

Et

∞∑

i=0

(ξpβ)
i

{
(1 + τp,t)

Ct+i(h)
−σ

PC,t+i

Pt (f)Yt+i (f)− χ0 (e
zt+i)−χ Yt+i(f)

1+χ

1 + χ

}

s.t.

Yt+i(f) =

[
Pt+i(f)

Pt+i

]− 1+νp
νp

Yt. (C.7)

The variable τp,t captures an exogenous time-varying subsidy on sales and is isomorphic to

mark-up shocks.

Appendix C.1.4. Market Clearing

Aggregating over households, market-clearing for the domestic good requires

Yt = CD,t + C∗
M,t +Gt, (C.8)

where C∗
M,t denotes the foreign country’s demand for the domestic good andGt is the demand

for the domestic good due to government spending.

Bonds are in zero net-supply, requiring BD,t+1 = 0 and BF,t+1 + B∗
F,t+1 = 0. Finally,

the budget constraint of the government is balanced in every period by adjusting lump-sum

taxes, Tt, to the stochastic government purchases, Gt. The share of government consumption

in output, Gt

Yt
, evolves according to

ωgy,t = ρgyωgy,t−1 + σgyεgy,t, (C.9)

where ωgy,t measures the deviation of Gt

Yt
from its steady-state value.

Appendix C.1.5. Equilibrium Conditions and Calibration

Using the notation introduced in Section 2.1, the endogenous variables are collected in

the vector

x̃t =


 Ct, CD,t, CM,t, Yt, Gt,

PC,t

Pt
, πt, Hp,t, Gp,t,

P
opt
t

Pt
,∆t, R

n
t , qt,

C∗
t , C

∗
D,t, C

∗
M,t, Y

∗
t , G

∗
t ,

P ∗

C,t

P ∗

t
, π∗

t , H
∗
p,t, G

∗
p,t,

P
opt∗
t

P ∗

t
,∆∗

t , R
n∗
t




′

, (C.10)

where the variables QD,t, QF,t, BD,t+1, BF,t+1, Tt,Πt, et and their foreign counterparts are

omitted from x̃t, since they assume the value of zero in equilibrium or are substituted out in

the following. The vector of endogenous variables includes producer price inflation, defined
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as πt =
Pt

Pt−1
, and the nominal interest rate Rn

t . The exogenous variables are collected in

vector

ζt =
(
zt, τp,t, ωgy,t, z

∗
t , τ

∗
p,t, ω

∗
gy,t

)′
. (C.11)

For illustration, we assume as in Benigno and Benigno (2006) that the policymakers use

producer price inflation rates πt and π
∗
t as instruments.18 Without detailed derivations, we

provide a complete list of the conditions characterising the private sector equilibrium for

given policies in the model.

The following equations result from the households’ optimization problems:

1. derivatives with respect to Ct and C
∗
t and BD,t+1 and B

∗
D,t+1 to define nominal interest

rates

βEt

((
Ct+1

Ct

)−σ
PC,t

Pt

Pt+1

PC,t+1

1

πt+1

)
=

1

1 +Rn
t

, (C.12)

βEt

((
C∗

t+1

C∗
t

)−σ P ∗
C,t

P ∗
t

P ∗
t+1

P ∗
C,t+1

1

π∗
t+1

)
=

1

1 +Rn∗
t

; (C.13)

2. derivatives with respect to BFt

κ0

(
C∗

t

Ct

)−σ

= qt, (C.14)

with qt denoting the consumption based real exchange rate and κ0 = q0

(
C∗

0

C0

)−σ

;

3. optimal choice of CD,t, C
∗
D,t imply

CD,t = ωcCt

(
PC,t

Pt

) 1+ρc
ρc

, (C.15)

C∗
D,t = ω∗

cC
∗
t

(
P ∗
C,t

P ∗
t

) 1+ρc
ρc

; (C.16)

4. optimal choice of CM,t, C
∗
M,t imply

CM,t = Ct(1− ωc)

(
P ∗
C,t

P ∗
t

1

qt

) 1+ρc
ρc

, (C.17)

C∗
M,t = C∗

t (1− ω∗
c )

(
PC,t

Pt

qt

) 1+ρc
ρc

; (C.18)

18For this class of models, the open-loop Nash equilibrium is not unique if policymakers opt for the nominal

interest rate as instrument. See for example Coenen et al. (2007) for a discussion of this issue.
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5. the definition of the consumption goods Ct, and C
∗
t impose

Ct =

(
ω

ρc
1+ρc
c C

1

1+ρc

D,t + (1− ωc)
ρc

1+ρc C
1

1+ρc

M,t

)1+ρc

, (C.19)

C∗
t =

(
ω
∗ ρc
1+ρc

c C
∗ 1

1+ρc

D,t + (1− ω∗
c )

ρc
1+ρc C

∗ 1

1+ρc

M,t

)1+ρc

. (C.20)

Profit maximization by the intermediaries implies the following set of conditions:

1. the optimal (relative) price set by adjusting firms
P

opt
t

Pt
and

P
opt∗
t

P ∗

t

(
P opt
t

Pt

)1+
1+νp
νp

χ

=
Hp,t

Gp,t

, (C.21)

(
P opt∗
t

P ∗
t

)1+
1+ν∗p

ν∗p
χ

=
H∗

p,t

G∗
p,t

; (C.22)

2. with Hp,t and H
∗
p,t following

Hp,t =
1 + νp
νp

χ0

(
Yt
ezt

)χ
PC,t

C−σ
t Pt

Yt

+ ξpβEt

[(
Ct+1

Ct

)−σ
Pt+1

PC,t+1

PC,t

Pt

(
π̄

πt+1

)−
1+νp
νp

(1+χ)

Hp,t+1

]
,

(C.23)

H∗
p,t =

1 + ν∗p
ν∗p

χ∗
0

(
Y ∗
t

ez
∗

t

)χ P ∗
C,t

C∗−σ
t P ∗

t

Y ∗
t

+ ξ∗pβEt



(
C∗

t+1

C∗
t

)−σ P ∗
t+1

P ∗
C,t+1

P ∗
C,t

P ∗
t

(
π̄∗

π∗
t+1

)−
1+ν∗p

ν∗p
(1+χ)

H∗
p,t+1


 ,

(C.24)

π̄ is the steady-state (gross) inflation rate;

3. with Gp,t and G
∗
p,t following

Gp,t =
1 + τp,t
νp

Yt

+ ξpβEt

[(
Ct+1

Ct

)−σ
Pt+1

PC,t+1

PC,t

Pt

(
π̄

πt+1

)1−
1+νp
νp

Gp,t+1

]
,

(C.25)
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G∗
p,t =

1 + τ ∗p,t
ν∗p

Y ∗
t

+ ξ∗pβEt



(
C∗

t+1

C∗
t

)−σ P ∗
t+1

P ∗
C,t+1

P ∗
C,t

P ∗
t

(
π̄∗

π∗
t+1

)1−
1+ν∗p

ν∗p

G∗
p,t+1


 ;

(C.26)

4. the evolution of prices

(1− ξp)

(
P opt
t

Pt

)− 1

νp

+ ξp

(
π̄

πt

)− 1

νp

= 1, (C.27)

(1− ξ∗p)

(
P opt∗
t

P ∗
t

)− 1

ν∗p

+ ξ∗p

(
π̄∗

π∗
t

)− 1

ν∗p

= 1; (C.28)

5. evolution of price dispersion

∆t = (1− ξp)

(
P opt
t

Pt

)−
1+νp
νp

(1+χ)

+ ξp

(
π̄

πt

)−
1+νp
νp

(1+χ)

∆t−1, (C.29)

∆∗
t = (1− ξ∗p)

(
P opt∗
t

P ∗
t

)−
1+ν∗p

ν∗p
(1+χ)

+ ξ∗p

(
π̄∗

π∗
t

)−
1+ν∗p

ν∗p
(1+χ)

∆∗
t−1. (C.30)

The goods market clearing conditions are:

Yt = CDt + C∗
Mt +Gt, (C.31)

Y ∗
t = C∗

Dt + CMt +G∗
t . (C.32)

Government spending is a fixed stochastic share of output:

Gt = ωgy,tYt, (C.33)

G∗
t = ω∗

gy,tY
∗
t . (C.34)

The period utility functions are:

Ut =
C1−σ

t

1− σ
− χ0 (e

zt)−χ Y
1+χ
t

1 + χ
∆t, (C.35)

U∗
t =

C∗1−σ
t

1− σ
− χ∗

0

(
ez

∗

t

)−χ Y
∗1+χ
t

1 + χ
∆∗

t . (C.36)
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The policy rules, which will be replaced by the first order conditions of the policymakers,

are

Rn
t = (1 + R̄n)

(
1 +Rn

t−1

1 + R̄n

)γRn (πt
π̄

)(1−γRn )γπ
− 1, (C.37)

Rn∗
t = (1 + R̄n∗)

(
1 +Rn∗

t−1

1 + R̄n∗

)γ∗

Rn
(
π∗
t

π̄∗

)(1−γ∗

Rn )γ
∗

π

− 1. (C.38)

Augmenting the set of conditions (C.12)-(C.36) with the two definitions

it = πt, (C.39)

i∗t = π∗
t , (C.40)

we have cast the structural equations of the model into the form of (1)

Etg(x̃t−1, x̃t, x̃t+1, i1,t, i2,t, ζt) = 0.

The step of adding equations (C.39) and (C.40) and removing the policy rules is automated

by our toolbox.

The parameterization of the model is provided in Table C.2. The choices are comparable

to those in Benigno and Benigno (2006) and Corsetti et al. (2010). Most notably, by setting

the coefficient governing the intertemporal elasticity of substitution σ equal to 2 and fixing

the elasticity of substitution between traded goods at 2, the home and foreign good are

substitutes in the utility function the household. Steady-state imports are about 15% of

GDP, which reflects home-biased preferences, given that the two countries are equal in

size and symmetric. Accordingly, the countries are equally weighted in the global welfare

function.

Appendix C.2. Extensions

We briefly describe the additional equations if consumer price inflation is used as instru-

ments. Using consumer price inflation, πC,t =
PC,t

PC,t−1
as the policy instrument, we need to

define consumer price inflation by relating the relative price of consumption
PC,t

Pt
to producer

price inflation:

πC,t =

(
PC,t

Pt

)(
Pt−1

PC,t−1

)
πt, (C.41)

π∗
C,t =

(
P ∗
C,t

P ∗
t

)(
P ∗
t−1

P ∗
C,t−1

)
π∗
t . (C.42)
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Table C.2: Parameters for the Open Economy Model

Parameter Used to Determine Parameter Used to Determine

β = 1/1.01 discount factor σ = 2 intertemporal consumption elasticity

χ = 0.5 labor supply elasticity L̄ = 1 steady-state labor supply to fix χ0

1+ρc

ρc = 2 trade subst. elasticity ωc = 0.85 home bias in consumption

ξp = 0.75 Calvo price parameter
1+νp
νp

= 10 subst. elasticity of varieties

τ̄ = 1/9 steady-state subsidy to producers π̄ = 1 steady-state inflation

ρz = 0.95 persistence of tech. shock σz = 0.008 std. of tech. shock

ρτ = 0 persistence of markup shock στ = 0.1 std. of markup shock

ρgy = 0.99 persistence of gov. spending shock σgy = 0.01 std. of gov. spending shock

ωgy = 0 share of gov. spending κ0 = 1

ω = 0.5 weight on home country in Ramsey ω∗ = 0.5 weight on foreign country in Ramsey

Note: This table summarizes the parameterization of the open economy model described in Section 3 at

quarterly frequency.

Furthermore, the vector of endogenous variables is modified to include πC,t and π
∗
C,t, i.e.,

x̃t =


 Ct, CD,t, CM,t, Yt, Gt,

PC,t

Pt
, πt, Hp,t, Gp,t,

P
opt
t

Pt
,∆t, R

n
t , qt, πC,t,

C∗
t , C

∗
D,t, C

∗
M,t, Y

∗
t , G

∗
t ,

P ∗

C,t

P ∗

t
, π∗

t , H
∗
p,t, G

∗
p,t,

P
opt∗
t

P ∗

t
,∆∗

t , R
n∗
t , π

∗
C,t




′

. (C.43)

Appendix C.3. Relationship with Linear-Quadratic Solution

Corsetti et al. (2010) deviate from the setup in Benigno and Benigno (2006) by allowing

for home bias, but by eliminating government spending. In the following, we allow for home

bias, abstract form government spending, and focus on the case of the efficient steady state

in order to restate the model presented in Corsetti et al. (2010) using our notation. Absent

home bias (ωc = ω∗
c = 0.5), this model coincides with the one in Benigno and Benigno (2006)

for equally-sized countries.

The set of relevant structural relationships of the economy can be reduced to the following

set of equations if the model is (log-)linearised around its deterministic steady state

πt = κ

(
ỹt +

τ

χ+ σ
δ̃t + ut

)
+ βEtπt+1, (C.44)

π∗
t = κ∗

(
ỹ∗t −

τ

χ+ σ
δ̃t + u∗t

)
+ βEtπ

∗
t+1, (C.45)

ỹt − ỹ∗t =
1− 2τ

σ
δ̃t, (C.46)
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where

λ =
(1− βξp) (1− ξp)

ξp

(
1 + 1+νp

νp
χ
) ,

λ∗ =

(
1− βξ∗p

) (
1− ξ∗p

)

ξ∗p

(
1 +

1+θ∗p
θ∗p
χ
) ,

κ = λ (χ+ σ) ,

κ∗ = λ∗ (χ+ σ) ,

τ = −2ωc(1− ωc)

(
σ
1 + ρc
ρc

− 1

)
.

Following Corsetti et al. (2010) we assume symmetry, i.e., ωc = ω∗
c . As before, the remaining

parameters governing preferences over types and timing of consumption and leisure are

identical across countries. For the home country πt denotes the producer price inflation rate

in deviation from its steady state, ỹt is the output gap, and δ̃t stands for the terms of trade

gap. The terms of trade are denoted as the price of imports divided by the price of exports.

π∗
t and ỹ∗t are defined analogously. Notice that for σ 1+ρc

ρc
= 1, the terms of trade interaction

is shut down as discussed in Benigno and Benigno (2006).

Relative consumption and the real exchange rate gaps are determined as

q̃t = σ (c̃t − c̃∗t ) ,

q̃t = (ωc + ω∗
c − 1)δ̃t.

By taking the true linear-quadratic approximation to the utility function, Corsetti et al.

(2010) show that the loss function under symmetry is given by

Lt = −
1

2

(
λy (ỹt)

2 + λ∗y (ỹ
∗
t )

2 + λπ (πt)
2 + λ∗π (π

∗
t )

2 + λδ

(
δ̃t

)2)
, (C.47)

where

λy = χ+ σ, (C.48)

λ∗y = χ+ σ, (C.49)

λπ =
1

λ

1 + νp
νp

, (C.50)

λ∗π =
1

λ∗
1 + ν∗p
ν∗p

, (C.51)

λδ =
1− 2τ

σ
τ. (C.52)
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Appendix D. Macroprudential Regulation Model

Our toolbox can also be applied to policy games in a closed economy. We lay out a policy

game between a central bank and a financial policymaker in a model following Gertler and

Karadi (2011). In addition to nominal rigidities, the economy features financial frictions.

Non-financial firms are prevented from issuing equity to households directly, but have to

go through financial intermediaries, referred to as “banks,” in order to raise funds. Due

to an agency problem, however, banks are limited in their ability to attract deposits and

issue credit to non-financial firms. Accordingly, credit is under-supplied, and the reactions

to shocks are amplified by the familiar financial-accelerator mechanism.

Appendix D.1. Model Environment

Appendix D.1.1. Households

The representative household consists of a continuum of members. A fraction 1 − f of

its members supplies labor to firms and returns the wage earned to the household. The

remaining fraction f works as bankers. The household utility function is

E0

∞∑

t=0

βt

[
log(Ct − γCt−1)− χ0

L1+χ
t

1 + χ

]
. (D.1)

The importance of internal habits in consumption is governed by the parameter γ. The

budget constraint takes the form

PtCt = PtWtLt + PtΠt − PtTt − PtDt + (1 +Rt−1)PtDt−1. (D.2)

Households use their income to consume, Ct, make tax transfers to the government, Tt, and

to save in terms of deposits with banks, Dt. Income is derived from returns on deposits,

wages, and profits of banks, Πt.

Financially constrained bankers have an incentive to retain earnings. To prevent the

financial constraint from becoming irrelevant by the retention of bank earnings, a banker

ceases operations next period with the i.i.d. probability 1−θ. Upon exiting, bankers transfer

retained earnings to the households and become workers. Each period (1− θ) f workers are

selected to become bankers. These new bankers receive a startup transfer from the family.

By construction, the fraction of household members in each group is constant over time. Πt

is net funds transferred to the household from its banker members; that is, funds transferred

from existing bankers minus the funds transferred to new bankers (measured by ω̄).
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Appendix D.1.2. Banks

Bank j takes in deposits, Dt(j), from households and invests into non-financial firms

through an equity contract. Continuing banks do not consume but accumulate all earnings.

Due to taxes/subsidies on equity, the bank operates with the amount (1−BTt)Nt(j), where

BTt is the tax rate and Nt(j) is the equity of bank j. Since assets equal liabilities on the

bank balance sheet

QtSt(j) = (1−BTt)Nt(j) +Dt(j). (D.3)

Let deposits Dt(j) pay the non-state-contingent (real) return (1 + Rt) and let shares St(j)

pay the stochastic return (1 +Rs
t+1) at time t+ 1. Net worth in t+ 1 is then determined as

the difference between earnings on assets and interest payments on liabilities

Nt+1(j) = (1 +Rs
t+1)QtSt(j)− (1 +Rt)Dt(j), (D.4)

or combining (D.3) and (D.4)

Nt+1(j) =
(
Rs

t+1 − Rt

)
QtSt(j) + (1 +Rt)(1− BTt)Nt(j). (D.5)

The expected terminal wealth of a bank is then given by

max
{St+i(j)}

Vt(j) = Et

∞∑

i=0

(1− θ) θiΛt,t+1+iNt+1+i(j), (D.6)

with the stochastic discount factor Λt,t+j = βj λct+j

λct
.

Absent financial frictions, the bank expands its balance sheet when the expected dis-

counted excess return on loans, EtΛt,t+1+i

(
Rs

t+1+i − Rt+i

)
, is positive. To limit the ability of

banks to attract deposits, Gertler and Karadi (2011) introduce the following agency problem.

At the beginning of each period, a banker can choose to transfer a fraction λ of assets to his

household. If the banker makes this transfer, depositors will force the bank into bankruptcy

and recover the remaining fraction 1−λ of assets. Thus, households will deposit funds with

bank j only if the expected terminal wealth, Vt(j) exceeds the fraction of assets that can be

diverted, λQtSt(j), in period t

Vt(j) ≥ λQtSt(j). (D.7)

If equation (D.7) binds, a bank’s ability to raise deposits is limited and expected positive

excess returns can persist in equilibrium.
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As shown in Section Appendix D.3 of this Appendix a bank’s ability to attract deposits

is directly related to its net worth. At the aggregate level this relationship is shown to obey

QtSt =
ηt

λ− vt
(1−BTt)Nt. (D.8)

The term ηt
λ−vt

is the ratio of assets to equity. Condition (D.8) limits the aggregate leverage

ratio to the point where the incentives to cheat are balanced by the costs for each bank. The

marginal values of loans, vt, and of equity, ηt, are defined recursively as

vt = Et

{
(1− θ) Λt,t+1

(
Rs

t+1 −Rt

)}

+Et

{
θΛt,t+1

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 −Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1− BTt+1)vt+1

}
,

(D.9)

ηt = (1− θ) + θEt

{
Λt,t+1

[(
Rs

t+1 −Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1−BTt+1)ηt+1

}
.

(D.10)

Finally, aggregate net worth evolves according to

Nt = θ

[
(Rs

t − Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
(1− BTt−1)Nt−1 + ω̄QtSt−1. (D.11)

Appendix D.1.3. Production of Goods

The representative firm uses capital and labor to produce its output

Yt = eztKα
t L

1−α
t , (D.12)

where technology evolves according to zt = ρzzt−1 + σzεz,t. Each firm operates for only one

period, but it must purchase the capital used in period t+1 one period in advance. To do so,

the firm issues one share for each unit of capital purchased in period t to be used in period

t+ 1. Absent arbitrage opportunities, the value of capital equals the value of shares

PtQtKt+1 = PtQtSt. (D.13)

The firm’s revenues consist of output sales (priced at marginal costs) and the value of un-

depreciated capital. Payments for servicing the shares and for labor services enter the ac-

counting as expenses. Hence, profits in period t + 1 are given by

Πf
t+1 =MCt+1Yt+1 + Pt+1Qt+1(1− δ)Kt+1 − Pt+1Wt+1Lt+1 − (1 + Rs

t+1)PtQtSt. (D.14)
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With the decision on the capital stock made in period t and labor hired in the t + 1 spot

market, the firm’s maximization problem taking prices as given satisfies

max
St,Kt+1

Et

[
Λt,t+1max

Lt+1

Πf
t+1

]

s.t.

Yt = eztKα
t L

1−α
t

QtPtKt+1 = QtPtSt. (D.15)

The zero profit condition implies that the return on shares is given by

(1 +Rs
t+1) =

1

Qt

αMCt+1Yt+1

Pt+1Kt+1
+

(1− δ)

Qt

Qt+1, (D.16)

where

(1 +Rs
t ) =

(1 + rst )
Pt

Pt−1

. (D.17)

The optimal choice of labor satisfies

Lt = (1− α)
Yt
Wt

MCt

Pt

. (D.18)

To support an environment with nominal price rigidities, we introduce an intermedi-

ate layer of firms between producing-firms and firms that assemble the final goods. Each

intermediate firm acquires the product of a producing firm and applies a stamp to it that dif-

ferentiates it from those of others. In choosing the optimal resale price Pt(f) an intermediate

firm faces adjustment costs as in Rotemberg (1982)

max
Pt+i(f)

Et

∞∑

i=0

Λt,t+i {(1 + τp)Pt+i (f)−MCt+i}Yt+i

(
Pt+i (f)

Pt+i

)−
1+νp
νp

− φP,t+i (f)Pt+iYt+i,

(D.19)

where Yt+i

(
Pt+i(f)
Pt+i

)− 1+νp
νp

is the demand schedule for good f . The adjustment cost for prices

follows

φP,t (f) =
φp

2

(
Pt (f)

(ιpπt−1 + (1− ιp)π̄)Pt−1 (f)
− 1

)2

. (D.20)

Appendix D.1.4. Production of Capital

Physical capital accumulates according to

Kt+1 = Int + (1− δ)Kt. (D.21)
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The capital stock is augmented by net investment, Int , and requires gross investment in the

amount, Igt

Int =

[
1−

ψ

2

(
Igt
Igt−1

− 1

)2
]
Igt. (D.22)

Taking the price of capital, Qt, as given, capital producing firms solve

max
I
g
t+i

Et

∞∑

i=0

Λt,t+i

[
Qt+i

[
1−

ψ

2

(
Igt+i

Igt+i−1

− 1

)2
]
Igt+i − Igt+i

]
. (D.23)

Appendix D.1.5. Market Clearing

The aggregate resource constraint requires

Yt = Ct + Igt +Gt, (D.24)

where government spending is set to be

Gt = ωgyYt. (D.25)

Appendix D.2. Equilibrium conditions in the Macroprudential Regulation Model

Using the notation introduced in Section 2.1, the endogenous variables are collected in

the vector

x̃t =



 Yt, Lt, Kt−1,Wt, R
s
t ,

MCt

Pt
, λct , Ct, Rt, St, Nt, vt, ηt,

Int , I
g
t , Gt, πt, φt,

∂φt

∂Pt
Pt,

∂φt

∂Pt−1
Pt, R

n
t ,∆R

s
t ,
[
QS

N

]

t
,
[
N
Y

]

t




′

, (D.26)

where the nominal interest rate, Rn
t , the interest rate spread, ∆Rs

t , the loan to net worth

ratio,
[
QS

N

]

t
, and the net worth to output ratio,

[
N
Y

]

t
, are defined below. The exogenous

vector ζt contains the technology shock

ζt = zt. (D.27)

We provide a complete list of the conditions characterising the private sector equilibrium for

given policies for the model described above.

The following equations result from the households’ optimization problem:

1. choice of optimal consumption

λct =
1

Ct − γCt−1

−Etβ
γ

Ct+1 − γCt

; (D.28)
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2. choice of optimal labor supply

χ0L
χ
t = λctWt; (D.29)

3. choice of optimal deposit holdings

Et

λct+1

λct
=

1

β(1 +Rt)
. (D.30)

The following equations result from the banks:

1. leverage constraint

QtSt =
ηt

(λ− vt)
(1−BTt)Nt; (D.31)

2. bank capital evolves according to

Nt = θ

[
(Rs

t − Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
(1− BTt−1)Nt−1 + ω̄QtSt−1; (D.32)

3. the marginal value of loans

vt = Et (1− θ) Λt,t+1

(
Rs

t+1 − Rt

)

+θΛt,t+1

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1− BTt+1)vt+1;

(D.33)

4. the marginal value of equity

ηt = Et (1− θ) + θΛt,t+1

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
(1−BTt+1)ηt+1.

(D.34)

The following equations result from the basic producers:

1. equity financing for capital

Kt+1 = St; (D.35)

2. production function

Yt = eztKt
αL1−α

t ; (D.36)

3. choice of optimal labor input

Lt = (1− α)
Yt
Wt

MCt

Pt

; (D.37)
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4. zero profit condition

(1 +Rs
t ) =

αYt
Qt−1Kt

MCt

Pt

+
(1− δ)

Qt−1

Qt. (D.38)

The following equations result from the variety producers:

1. first order condition with respect to prices

Et

[ (
− 1

νp
(1 + τp) +

1+νp
νp

MCt

Pt

)
Yt − YtPt

∂φt

∂Pt
− Λt,t+1Yt+1Pt+1

∂φt+1

∂Pt

]
= 0, (D.39)

with the price adjustment cost and its derivatives satisfying

φt =
φp

2

(
πt

ιpπt−1 + (1− ιp)π̄
− 1

)2

, (D.40)

∂φt

∂Pt

Pt = φp

(
πt

ιpπt−1 + (1− ιp)π̄
− 1

)
πt

ιpπt−1 + (1− ιp)π̄
, (D.41)

∂φt

∂Pt−1

Pt = −φp

(
πt

ιpπt−1 + (1− ιp)π̄
− 1

)
πt

ιpπt−1 + (1− ιp)π̄
πt. (D.42)

The following equations result from the physical capital producers:

1. evolution of physical capital

Kt+1 = Int + (1− δ)Kt; (D.43)

2. investment adjustment costs

Int =

[
1−

ψ

2

(
Igt
Igt−1

− 1

)2
]
Igt ; (D.44)

3. price of capital from optimal investment choice

Qt

[
1−

ψ

2

(
Igt
Igt−1

− 1

)2

− ψ

(
Igt
Igt−1

− 1

)
Igt
Igt−1

]

+Λt,t+1Qt+1ψ

(
Igt+1

Igt
− 1

)(
Igt+1

Igt

)2

= 1. (D.45)

The aggregate resource constraint requires

Yt = Ct + Igt +Gt, (D.46)

where government spending is set to be

Gt = ωgyYt. (D.47)

In addition, we define:
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1. the loan rate spread

∆Rs
t = Rs

t −Rt−1; (D.48)

2. the ratio of loans to net worth

[
QS

N

]

t

=
ηt

λ− vt
; (D.49)

3. the nominal interest rate
1

(1 +Rn
t )

= β
λct+1

λct

1

πt+1

; (D.50)

4. the net worth to output ratio [
N

Y

]

t

=
Nt

Yt
. (D.51)

The period utility functions are

U cb
t = log(Ct − γCt−1)− χ0

L1+χ
t

1 + χ
− µcb(πt − π̄)2 (D.52)

and

Umpr
t = log(Ct − γCt−1)− χ0

L1+χ
t

1 + χ
− µmpr

(
(Rs

t − R̄s)− (Rt−1 − R̄)
)2
. (D.53)

The policy rules followed by the central bank and the macroprudential policymaker that

will subsequently be replaced by the first order conditions of the policymakers are

Rn
t = R̄n + γRn

(
Rn

t−1 −

(
π̄

β
− 1

))
+ (1− γRn)γπ(πt − π̄) (D.54)

and

BTt = γBTBTt−1 + γS(St − St−1) (D.55)

In the optimal policy exercises, the central bank uses inflation, πt, as instrument whereas

the financial policymaker uses the tax on bank capital, BTt.
19 By augmenting the set of

conditions (C.12)-(C.36) with the two definitions

icbt = πt, (D.56)

impr
t = BTt, (D.57)

19Similar to the case of the two-country model, the open-loop Nash equilibrium is indeterminate when the

nominal interest is used as policy instrument.
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we have cast the structural equations of the model into the form of (1)

Etg(x̃t−1, x̃t, x̃t+1, i1,t, i2,t, ζt) = 0.

Table D.2 summarises the parameter choices for the subsequent experiments. Most pa-

rameters are set at values commonly found in the literature. The parameter φp in the

adjustment cost function for prices is set at 1281. With this value in place the (linearized)

Phillips curve features the same slope as that of a model with Calvo contracts and an ex-

pected contract duration of one year. Inflation is set to zero in the steady state and the

subsidy to the intermediate goods producers is set to remove monopolistic distortions in

the steady state. The parameters governing the banking sector mimic those in Gertler and

Karadi (2011). The survival probability for banks is set at 0.95 implying an average horizon

of bankers of ten years. The steady-state ratio of loans to equity is set equal to 4. For ease

of exposition, we abstract from steady-state distortions by setting the interest rate spread

between loans and deposits (Rs −R) equal to zero.20 These choices imply that the resource

transfer to new banks as a fraction of total loans, ω̄, is 0.0101 and the portion of net worth

that the bank management can divert, λ, is 0.25.

When setting up the policy problem under cooperation, the objectives of the individual

policymakers receive equal weight in the joint objective function, i.e., ωcb = ωmpr = 0.5.

Positive values of the parameters µcb and µmpr introduce biases into the objective functions

of the central bank and the macroprudential policymaker as described below.

20The financial frictions in the model still imply inefficient allocations away from the state. At the expense

of rendering the steady state inefficient, the steady-state interest rate spread can of course be set at the value

of one hundred basis points as in Gertler and Karadi (2011) (or any other value).
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Table D.2: Parameters for the Macroprudential Regulation Model

Free Parameters

Parameter Used to Determine Parameter Used to Determine

β = 0.99 discount factor γ = 0.6 consumption habits

χ = 1 labor supply elasticity L̄ = 0.5 steady-state labor supply to fix χ0

α = 0.3 share of capital in production δ = 0.025 capital depreciation rate
1+νp
νp

= 11 subst. elasticity of varieties τp = 0.1 subsidy to producers

φp = 1281 price adjustment cost π̄ = 1 steady-state inflation

ψ = 1 investment adjustment cost ωgy = 0 share of gov. spending

ρa = 0.95 persistence of tech. shock σa = 0.01 std. of tech. shock

ωmpr = 0.5 weight of fin. reg. in Ramsey ωcb = 5 weight of non. pol. in Ramsey

µmpr = 4 add. term in fin. reg. utility µcb = 1 add. term in mon. pol. utility[
QS
N

]
= 4 steady-state ratio loans to net worth R̄s − R̄ = 0 steady-state interest rate spread

θ = 0.95 probability of bank survival ιp = 0.5 inflation persistence

Implied Parameters

λ = 0.25 diversion parameter ω̄ = 0.0101 resource transfer to new banks

χ0 = 3.6143 shift parameter in utility function

Note: This table summarizes the parameterization of the macroprudential regulation model described in

Section 4 at quarterly frequency.

Appendix D.3. Details on Conditions (D.8) and (D.11)

We begin by restating the expected terminal wealth of a bank as

max
{St+i(j)}

Vt(j) = Et

∞∑

i=0

(1− θ) θiΛt,t+1+iNt+1+i(j), (D.58)

where

Nt+1(j) =
(
Rs

t+1 − Rt

)
QtSt(j) + (1 +Rt)(1− BTt)Nt(j). (D.59)

Vt(j) can be split into two parts

Vt(j) = Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i

(
Rs

t+1+i − Rt+i

)
Qt+iSt+i(j)

)

+Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i(1 +Rt+i)Nt+i(j)

)
. (D.60)
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Defining vt(j) and ηt(j)

vt(j) = Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i

(
Rs

t+1+i −Rt+i

) Qt+iSt+i(j)

QtSt(j)

)
(D.61)

= Et

(
(1− θ) Λt,t+1

(
Rs

t+1 − Rt

)
+ Λt,t+1θ

Qt+iSt+i(j)

QtSt(j)
vt+1(j)

)
, (D.62)

ηt(j) = Et

(
∞∑

i=0

(1− θ) θiΛt,t+1+i(1 +Rt+i)
Nt+i(j)

Nt(j)

)

= Et

(
(1− θ) + Λt,t+1θ

Nt+1(j)

Nt(j)
ηt+1(j)

)
, (D.63)

we arrive at

Vt(j) = vt(j)QtSt(j) + ηt(j)Nt(j). (D.64)

In order to aggregate over banks, we make use of the fact that all banks have access to

the same investment opportunities as we will show now. Qt+1St+1(j)
QtSt(j)

will be equalized across

surviving firms, and similarly for Nt+1(j)
Nt(j)

. Substitute

Vt(j) = vtQtSt(j) + ηtNt(j) (D.65)

into the incentive-compatibility constraint

Vt(j) ≥ λQtSt(j) (D.66)

to obtain

vt(j)QtSt(j) + ηt(j)Nt(j) ≥ λQtSt(j). (D.67)

Assuming this constraint binds with equality and substituting QtSt(j) = ηt
(λ−vt)

Nt(j) into

the evolution of net worth Nt+1(j) =
(
Rs

t+1 −Rt

)
QtSt(j) + (1 +Rt)Nt(j) we arrive at

Nt+1(j)

Nt(j)
=
(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt). (D.68)

In turn, Qt+1St+1(j)
QtSt(j)

is given by

Qt+1St+1(j)

QtSt(j)
=

ηt+1

(λ−vt+1)
ηt

(λ−vt)

Nt+1(j)

Nt(j)

=

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 −Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
. (D.69)
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Consequently, vt and ηt are identical for each bank and evolve according to

vt = Et

{
(1− θ) Λt,t+1

(
Rs

t+1 − Rt

)}

+Et

{
θΛt,t+1

ηt+1

(λ−vt+1)
ηt

(λ−vt)

[(
Rs

t+1 −Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
vt+1

}
, (D.70)

ηt = (1− θ) + θEt

{
Λt,t+1

[(
Rs

t+1 − Rt

) ηt
(λ− vt)

+ (1 +Rt)

]
ηt+1

}
. (D.71)

Finally, aggregate net worth is the sum of the net worth of two groups: old and new

bankers. Bankers that survive from period t − 1 to period t will have aggregate net worth

equal to

θ

[
(Rs

t − Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
Nt−1. (D.72)

Assume that new bankers receive as endowment a fixed fraction of the current value of the

assets intermediated by exiting bankers in the previous period, i.e., (1− θ)QtSt−1. Let this

fraction be ω̄
(1− θ)

. Thus,

Nn
t =

ω̄

(1− θ)
(1− θ)QtSt−1 = ω̄QtSt−1. (D.73)

Current aggregate net worth is then the sum of net worth carried from the previous

period by surviving firms plus the net worth of new entrants, or

Nt = θ

[
(Rs

t − Rt−1)
ηt−1

(λ− vt−1)
+ (1 +Rt−1)

]
Nt−1 + ω̄QtSt−1, (D.74)

with vt and ηt as defined in equations (D.70) and (D.71).
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