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A. RBC model with a Constraint on Investment: Nonlinear Solution and Robust-6

ness Analysis7

We use two alternative approaches to finding a full nonlinear solution, dynamic programming and projection8

methods. We verified that the differences in the two approaches are negligible relative to the differences high-9

lighted with the piecewise linear solution.1 We present details of both algorithms before covering robustness10

analysis relative to alternative parametric assumptions.11

A.1. Dynamic Programming Solution.12

The capital stockKt is the only state variable in the model. We seek a rule that will map the current state variable13

Kt−1 and the realization of the stochastic process At into a choice of Kt. We discretize and put boundaries on14

the support of the decision rule that we seek. We consider a uniformly spaced set of points for Kt−1 and Kt. We15

discretize the support of both Kt−1 and At. The lower boundary for Kt−1 is 5 percent below the non-stochastic16

steady state for capital. The upper boundary is 40 percent above the non-stochastic steady state for capital. We17

experimented with different grids with little change in the results. We constrain A to lie within three standard18

deviations of its process, i.e. | lnAt| ≤ 3
√

σ2

1−ρ2 ,. We follow Tauchen (1986) in computing a finite state Markov-19

chain approximation for lnAt. The finest discretization we considered involved 75,000 points for capital and 20120

points for the stochastic process. Use of shape-preserving splines, allowed us to reduce the number of points in21

the grid for capital without compromising the quality of the solution.22

The dynamic programming algorithm that we use follows closely Chapter 12 of Judd (1998) and Chapter 323

of Ljungqvist and Sargent (2004). The initial choice for the decision rule in the dynamic program is taken to be24

the linear approximation to the decision rule obtained by standard methods. To accelerate the convergence of25

the dynamic programming algorithm, we use the Howard improvement algorithm.26

A.2. Projection Solution.27

We restate the optimization problem in the model in Lagrangian form as:28

max
{Ct,Kt+1,µt,λt}

∞

t=0

E0

∞
∑

t=0

βtC
1−γ
t − 1

1− γ

+ βtµt

(

−Ct −Kt + (1− δ)Kt−1 +AtK
α
t−1

)

+ βtλt (−Kt + (1− δ)Kt−1 − φI)

1 For instance, the compensating variation for the use of the dynamic programming solution relative to the projection solution is
in the order of $1 in $100,000,000 for the baseline calibration for the coarsest grid used.
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From standard manipulation of the first-order conditions for the Lagrangian problem, one obtains:29

C−γ
t − λt − Et

[

βC−γ
t+1

(

(1− δ) + αAt+1K
α−1
t

)

− β (1− δ)λt+1

]

= 0 (A.1)

We seek a solution in the form of a function g(Kt−1, At) that approximates C−γ
t −λt subject to the complemen-30

tary slackness condition, λt (−Kt + (1− δ)Kt−1 − φI) = 0 following the method of parameterized expectations31

described by den Haan and Marcet (1990) and Christiano and Fisher (2000). We approximate g(Kt−1, At) with32

a Chebyshev polynomial of order 6 and approximate the process for lnA with a Markov process, following33

Tauchen (1986). A Markov process with 10 states usually provides an adequate approximation to the underlying34

process. In an abundance of caution, we use 51 states. We constrain lnA to lie within three standard deviations35

of its process, i.e. | lnAt| ≤ 3
√

σ2

1−ρ2 .36

We solve for the parameters of the Chebyshev polynomial function using orthogonal collocation. Given Kt37

and At, we guess λt = 0. Consistent with that guess, Ct = g(Kt−1, At)
−γ and we can back out Kt from the38

resource constraint. We then check whether Kt − (1− δ)Kt−1 ≥ φI. If so, the original guess for λt was correct.39

If not, for the complementary slackness condition to hold, it must be that Kt = (1 − δ)Kt−1 + φI. Ct is then40

given by the resource constraint and λt = g(Kt−1, At)− C−γ
t .41

A.3. Robustness Analysis.42

Table A reports the subsidy (as a percent of steady-state consumption) that would compensate the agent for43

the use of the piecewise linear algorithm over a fully nonlinear method with initial conditions set at the non-44

stochastic steady state. The welfare cost of using our piecewise solution method is a non-monotonic function of45

risk aversion; it is “high” when risk aversion is around 1, “low” when risk aversion is at 2, and increasing with46

risk aversion for values of γ around 3 or higher. This happens because – under the full nonlinear solution – the47

irreversibility constraint has two opposing effects on the equilibrium average level of capital. The first effect – an48

illiquid capital effect – works to reduce average capital: when capital is irreversible, it is less useful in smoothing49

consumption when technology is low. The second effect – a precautionary capital effect – works to increase50

average capital through a precautionary saving effect: as capital is irreversible, consumption is more volatile,51

and more capital is held even if it is less useful in bad states of the world. These two opposing effects – captured52

by the fully nonlinear solution but not by the piecewise linear method – explain the non-monotonicity. Under53

the baseline calibration (γ = 2), the illiquid capital and precautionary capital effect almost offset each other,54

and the stochastic fixed point for capital2 happens to be close to its non-stochastic steady state, which does not55

2 The stochastic fixed point for capital is the level attained by capital with all innovations to technology set to 0,
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depend on uncertainty and irreversibility. The precautionary effect dominates for higher values of γ, whereas56

the illiquidity effect dominates for low risk aversion.3 These differences in the demand for capital under different57

parameterizations of the model influence the performance of the piecewise linear solution method. In particular,58

for high levels of risk aversion, the linear component of the solution cannot capture the increase in demand for59

capital stemming from precautionary motives, and the performance of the solution algorithm deteriorates, with60

a the welfare cost of $1 in about $100,000 when γ = 5. Similarly, the linear component of the piecewise linear61

solution is not able to capture the drop in capital demand when risk aversion is low, and the performance of the62

piecewise linear solution also deteriorates.63

Table A also considers sensitivity with respect to the choice of the value for the discount factor β. The welfare64

cost of using the piecewise method increases as the discount factor rises. We conjecture that in the plain vanilla65

RBC model the nonlinearities become more pronounced as the risk free rate becomes lower, thus penalizing66

linearization in general over a fully nonlinear solution algorithm.67

B. New Keynesian Model Subject to the Zero Lower Bound: Nonlinear Solution68

and Robustness Analysis69

The necessary conditions for an equilibrium are:70

Ct =
1

βtEt

(

Rt

Ct+1Πt+1

) (A.2)

mct = wt (A.3)

wt = ψLϑ
t Ct (A.4)

εx1t = (ε− 1)x2t (A.5)

x1t =
1

Ct

mctYt + θEtβtΠ
ǫ
t+1x1t+1 (A.6)

x2t = Π∗
t

(

Yt
Ct

+ θβtEt

Πε−1

t+1

Π∗
t+1

x2t+1

)

(A.7)

Zt = R

[

(

Πt

Π

)φp
(

Yt
Y

)φy

]

(A.8)

Rt = max (Zt, 1) (A.9)

Gt = sgYt (A.10)

1 = θΠε−1
t + (1− θ) (Π∗

t )
1−ε

(A.11)

3 In a partial equilibrium setting, Abel and Eberly (1999) also find that the introduction of capital irreversibility has an ambiguous
effect on the long-run level of the capital stock.
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vt = θΠε
tvt−1 + (1− θ) (Π∗

t )
−ε

(A.12)

Yt = Ct +Gt (A.13)

Yt =
Lt

vt
(A.14)

lnβt = (1− ρ) log β + ρ log βt−1 + σǫt. (A.15)

Given the balanced budget, Bt = 0. The model variables in the system above are C, R, Π, Π∗, mc, w,71

L, x1, x2, Z, G, Y, v, and β. We seek a solution in the form of three functions g1(vt−1, βt), g2(vt−1, βt) and72

g3(vt−1, βt) that approximate, respectively 1

CtβtRt
,
(x1t−

1
Ct

mctYt)
θβt

and

(

x2t
Π∗

t
−

Yt
Ct

)

θβt
subject to Rt = max (Zt, 1).73

We approximate g1, g2, and g3 with Chebyshev polynomials of order 6 and approximate the process for βt with74

a Markov process, following Tauchen (1986) and using 51 states. We constrain lnβt − lnβ to lie within 3.575

standard deviations of its process. We also constrain vt to lie in the interval bounded by 1 and 1.04. We solve76

for the parameters of the Chebyshev polynomial functions using orthogonal collocation. Given these choices, we77

follow the same guess-and-verify approach described in the appendix of Fernández-Villaverde et al. (2012).78

Figure A shows the absolute values of the residuals for the three intertemporal equations, equations (A.2),79

(A.6), and (A.7). The residuals were normalized respectively by Ct, x1t, and x2t. The maximum residual is in80

the order of 10−5. Figure B shows the residuals for the intertemporal equations for the piecewise linear solution81

and for a linear solution that disregards the zero lower bound. The residuals for the piecewise linear solution for82

the model with the ZLB enforced stay close to the residuals for the linear solution for a model that disregards83

the ZLB.84

Finally, Table B provides some robustness analysis relative to alternative parametric assumptions.85

C. A Further Example: A Model of Consumption Choice with a Borrowing Con-86

straint87

To showcase applicability of our toolbox to a wide array of problems, we provide one further example. Occa-88

sionally binding borrowing constraints arise in a wide variety of models where households can “self-insure” by89

holding and managing an asset, up to some borrowing limit, that can be used to buffer consumption against90

adverse shocks. In these models, one can distinguish situations when a household is not constrained in the current91

period, and the traditional Euler equation for consumption holds; and situations when the household is credit92

constrained, current consumption is too low relative to next period, and the Euler equation for consumption does93

not hold. This behavioral asymmetry introduced by borrowing constraints, made popular by Zeldes (1989) and94
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Deaton (1992), can be studied using our solution method.95

C.1. Model Overview.96

A consumer maximizes

maxE0

∞
∑

t=0

βtC
1−γ
t − 1

1− γ

subject to the budget constraint, and to an (occasionally binding) constraint stating that borrowing Bt cannot97

exceed a fraction m of income Yt :98

Ct +RBt−1 = Yt +Bt, (A.16)

Bt ≤ mYt. (A.17)

Above, R denotes the gross interest rate. The discount factor β is assumed to satisfy the restriction that βR < 1,99

so that in the deterministic steady state the borrowing constraint is binding. Given initial conditions, the100

impatient household prefers a consumption path that is falling over time, and attains this path by borrowing101

today. If income is constant, the household will eventually be borrowing constrained and will roll its debt over102

forever, and consumption will settle at a level given by income less the steady state debt service.103

The log of income follows an AR(1) stochastic process of the form104

lnYt = ρ lnYt−1 + σǫt (A.18)

where ǫt is an exogenous innovation distributed as standard normal, and σ its standard deviation.105

Denoting with λt the Lagrange multiplier on the borrowing constraint given by equation (A.17), the set

of equations describing the system of necessary conditions for an equilibrium is given by a system of four

equations in the four unknowns {Ct, Bt, λt, Yt} which includes equation (A.16), equation (A.18) , together with

the consumption Euler equation and the Kuhn-Tucker conditions, given respectively by

C−γ
t = βREt

(

C−γ
t+1

)

+ λt (A.19)

λt (Bt −mYt) = 0. (A.20)

The transitional dynamics of this model will depend in an important way on the gap between the discount106

rate and the interest rate, which can be measured as g = 1/β − R. In our setup, when the gap is small, the107
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economy can be characterized as switching between two regimes. In the first regime, more likely to apply when108

income and assets are relatively low, the borrowing constraint binds. Then, borrowing moves in lockstep with109

income, and consumption is more volatile than income. In the second regime, more likely to apply when income110

and assets are relatively high, the borrowing constraint is slack, and current consumption can be high relative111

to future consumption even if borrowing is below the maximum amount allowed. We focus our attention on this112

case, since it presents an asymmetry that can be studied using our solution method.4113

In the reference regime, the borrowing constraint binds, and the multiplier is greater than zero. In the114

alternative regime, the borrowing constraint is slack, and the multiplier is zero. Mapping these conditions into115

the notation used in Section ??, (M1) and (M2) differ because of one equation. The optimization problem116

implies that Bt = mYt when the borrowing constraint binds. Conversely, when the constraint is slack, the117

complementary slackness condition implies that Bt ≤ mYt and λt = 0. The conditions in (M1) encompass118

Bt = mYt, and the function g captures λt > 0. The conditions in (M2) encompass λt = 0, and the function h119

captures Bt ≤ mYt.120

C.2. Calibration and Policy Functions.121

Table C summarizes the baseline calibration, which reflects a yearly frequency. We set γ = 1, so that utility is122

logarithmic in consumption. We set the maximum borrowing at one year of income, so that m = 1. For the123

income process, we set ρ = 0.90 and σ = 0.0131, so that the standard deviation of lnY is 3 percent. Finally,124

we set R = 1.05 and β = 0.945. Under this calibration, the borrowing constraint, which binds in the reference125

regime, is slack about 30 percent of the time using the full nonlinear solution.126

We use dynamic programming to characterize a high-quality fully-nonlinear solution. We display the policy127

functions in terms of the optimal consumption chosen by the agent as a function of income and debt, the two state128

variables of the problem. The top panel of Figure C shows that for lower-than-average realizations of income129

(and high initial debt) the agent hits the borrowing constraint, the consumption function is relatively steep, and130

consumption is very sensitive to changes in income. For higher-than-average income, consumption is sufficiently131

high today relative to the future that it pays off to save for the future: the borrowing constraint becomes132

temporarily slack, and consumption becomes less sensitive to changes in income. The bottom panel compares133

the policy function obtained via dynamic programming with that obtained using our piecewise approach. The134

two policy functions are very similar. The only slightly difference is that – for given level of initial debt – the135

4 Depending on the calibration, other types of solutions may arise. If the discount rate is high and the gap g is large, the
borrowing constraint may bind always. Moreover, if the variance of the income process is sufficiently high and the gap approaches
zero, consumption may not converge to any finite limit. Even when consumption converges, the stochastic steady state may be
drastically different from the deterministic one because the household can accumulate enough assets so that the borrowing constraint
is never a concern. Our calibration rules these possibilities out.
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anticipation of future shocks leads the agent to save more (consume less) at all income levels.136

C.3. Assessing Performance: Impulse Responses, Moments and Welfare.137

Figure D shows the responses to two shocks, starting from a nonstochastic steady state where income is one and138

the ratio of debt to income is m = 1, the maximum limit. The first shock, in period 2, brings up income by 3139

percent (a 2 standard deviations shock). The second shock, in period 21, pushes down income by 3 percent. The140

solid and dashed lines denote the piecewise linear solution and the dynamic programming solution respectively.141

The dash-dotted lines denote the first-order perturbation solution, which incorrectly assumes that the borrowing142

constraint always binds. As the figure shows, the piecewise linear algorithm well captures the asymmetric143

responses of consumption, debt, and debt-to-income ratio following income shocks. A positive income shock144

makes the borrowing constraint slack; borrowing rises less than income, and consumption rises less than it would145

were the constraint binding in all states of the world. Conversely, when income drops, the borrowing constraint146

binds, borrowing falls in proportion with income, and consumption reacts more than under a positive shock.147

Table D shows that the moments computed from the piecewise linear and the nonlinear solution method148

are again strikingly close. The OccBin can capture first, second, and third moments of the distribution of149

consumption. In particular, it captures the skewness in consumption derived from the occasionally binding150

constraint, which is missed by the first-order perturbation method.5 Furthermore, the piecewise linear method151

comes close to replicating the frequency with which the constraint binds. Under the piecewise linear solution,152

the borrowing constraint binds 84 percent of the time. Under the fully nonlinear solution, the constraint binds153

slightly less frequently, 73 times out of 100 periods. The difference reflects the precautionary behavior induced154

by the anticipation of future shocks which implies higher average saving under the full nonlinear solution.155

The differences between the piecewise linear and the full nonlinear solution for this model again highlight156

aspects of the economic problem that the piecewise method cannot capture. For this particular model, higher157

income uncertainty, reduced attitudes toward borrowing (caused by higher discount factor or higher risk aversion),158

and a looser borrowing limit can magnify the differences between the piecewise solution and the global solution.159

However, in all these cases the piecewise linear solution still performs uniformly better than the solution where160

the borrowing constraint is assumed to be always binding.161

Relative to the full nonlinear solution, the utility cost of using the piecewise linear method is positive, but162

small as shown in Table E. For the baseline calibration, the household suffers a utility cost of $1 every $150,000163

of consumption. The cost would be five times larger using a policy function based on first–order perturbation,164

5 The linearized model exhibits some small amount of skewness in consumption simply because we write the model in linearized
form, but the income shocks are log-linear.
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assuming that the constraint is always binding. In other experiments reported, we find that the utility cost165

becomes slightly larger with a higher maximum debt-to-income ratio; with higher risk aversion; with higher166

uncertainty; and with lower impatience. In all these cases, precautionary considerations become somewhat more167

important, and ignoring them magnifies the differences between the piecewise method and global nonlinear168

solution. However, even in these cases the improvements afforded by the piecewise method are substantial:169

compared to the global solution, the welfare cost of using the piecewise method is between five and six times170

smaller than the cost of using the linearized solution.171
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Table A: Utility Cost of the Solution Method: RBC Model with Constraint on Investment.

Model Solution Method Solution Method
Piecewise linear $ 1 every Constant capital $ 1 every

γ = 2, β = 0.96 (Baseline) 0.000007% $ 14,556,184 0.04% $ 2,842

γ = 1 0.000036% $ 2,793,317 0.02% $ 4,653
γ = 3 0.000113% $ 881,804 0.05% $ 1,980
γ = 4 0.000413% $ 242,411 0.07% $ 1,481
γ = 5 0.000958% $ 104,424 0.09% $ 1,157

β = 0.98 0.000028% $ 3,557,192 0.05% $ 1,938
β = 0.94 0.000003% $ 29,844,218 0.03% $ 3,838

γ = 2, φ = 0 0.000014% $7,194,352 0.05% $ 2,041

Note: The “Piecewise Linear” column indicates the subsidy rate (as a percent of steady-state consumption) that would compensate

an agent for the use of the piecewise linear algorithm over a fully nonlinear method with initial conditions set at the non-stochastic

steady state. The “Constant Capital” column indicates the subsidy when the agent uses a suboptimal decision rule setting the

capital stock to its previous value.

Table B: Robustness Analysis of Model with ZLB

Solution Method
Piecewise linear Nonlinear

% at ZLB log output % at ZLB log output
Model St.dev. Skewness St.dev. Skewness
Baseline 4.2 1.44% -0.22 7.13 1.54% -0.49

π = 1, β = 0.9891 6.7 1.35% -0.38 9.35 1.51% -0.76
φπ = 5, φy = 0 6.7 0.86% -0.66 9.35 0.94% -1.20

φπ = 10 2.91 1.69% -0.13 4.41 1.72% -0.14
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Table C: Baseline Calibration of Model with Borrowing Constraint

Parameter Value Parameter Value
β, Discount Factor 0.945 γ, Relative Risk Aversion 1
R, Interest Rate 1.05 m, Borrowing Limit 1
ρ, Persistence of Income Shock 0.90 σ, St. Dev. Income Shock 0.0131

Table D: A Comparison of Key Moments: Model with Borrowing Constraint.

Log Consumption
Solution Method Mean St. dev. Skewness
Nonlinear -0.0512 3.40% -0.24
Piecewise Linear -0.0513 3.46% -0.22
First-Order Perturbation -0.0516 3.60% -0.04

Log Income
Mean St. dev. Skewness

Nonlinear 0.0000 3% 0.00
Piecewise Linear 0.0000 3% 0.00
First-Order Perturbation 0.0000 3% 0.00

Correlations
lnY, lnC lnY, lnB

Nonlinear 0.96 0.96
Piecewise Linear 0.95 0.98
First-Order Perturbation 0.92 1

Frequency of Hitting the Borrowing Constraint (%)
Nonlinear 73
Piecewise Linear 84
First-order Perturbation 100

Table E: Utility Cost of the Solution Method: Model with Borrowing Constraint.

Model Solution Method Solution Method
Piecewise linear $ 1 every First-order Perturbation $ 1 every

(Always Constrained)
Baseline 0.0007% $ 149,280 0.0033% $ 30,731

High debt limit, m = 2 0.0013% $ 77,444 0.0071% $ 14,082
High risk aversion, γ = 2 0.0023% $ 44,140 0.0131% $ 7,657

High uncertainty, σ = 0.0196 0.0024% $ 41,233 0.0116% $ 8,650
Low impatience, β = 0.948 0.001% $ 102,989 0.0056% $ 17,812
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Figure A: New Keynesian Model Subject to the Zero Lower Bound: Intertemporal Errors of the Collocation
Solution

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04
−10

−9

−8

−7

−6

−5

−4
Fully Nonlinear Solution, Consumption Euler Error (consumption share)

Lo
g 

10
 S

ca
le

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04
−11

−10

−9

−8

−7

−6

−5
Fully Nonlinear Solution, X1 Intertemporal Condition Error (X1 share)

Lo
g 

10
 S

ca
le

1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04
−11

−10

−9

−8

−7

−6

Lo
g 

10
 S

ca
le

Fully Nonlinear Solution, X2 Intertemporal Condition Error (X2 share)

Level of Price Dispersion, v

 

 

Low Beta

Median Beta

High Beta

Note: “Median Beta” corresponds to β
t
= 0.994. “Low Beta” corresponds to β

t
= 0.965. “High Beta” corresponds to β

t
= 1.023.

An open circle indicates that the zero lower bound on the nominal interest rate is binding.

12



Figure B: New Keynesian Model: Intertemporal Errors for the Piecewise Linear Solution (with ZLB enforced)
and for the Linear Solution (with ZLB disregarded)
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Figure C: Consumption Function, Model with Borrowing Constraint.
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Figure D: Model with Borrowing Constraint: An Unexpected Increase in Income, Followed by a Decrease
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