OccBin: A Toolkit for Solving Dynamic Models With Occasionally Binding Constraints Easily

Luca Guerrieri, Federal Reserve Board and Matteo Iacoviello, Federal Reserve Board

July 2014

Introduction

What We Do

- Inequality constraints that bind occasionally arise in a wide array of economic applications.
- We describe how to adapt a first-order perturbation approach and apply it in a piecewise fashion to handle occasionally binding constraints.
- We solve three examples of dynamic stochastic models with this approach:
 - 1. A real business cycle model with a constraint on investment;
 - 2. A new Keynesian model subject to the zero lower bound on the policy interest rate:
 - 3. A textbook example of optimal consumption choice in the presence of liquidity constraints.
- In each case, we compare the piecewise linear perturbation solution with a high-quality numerical solution that can be taken to be virtually exact.

Introduction

Contributions

- 1. We outline an algorithm to obtain a piecewise linear solution.
 - While the individual elements of the algorithm are not original, our recombination simplifies the application of this type of solution to a general class of models.
 - We have developed a MATLAB toolbox that extends Dynare.
- 2. We present a systematic assessment of the quality of the piecewise linear perturbation method relative to a virtually exact solution.
 - Where applicable, the virtually exact solution is obtained by dynamic programming on a very fine lattice for the state variables of the model.
 - In addition, following Christiano and Fisher (2000), we use spectral methods, which have been found to be highly accurate; for instance see Aruoba et al. (2006).

The Solution Approach

- Because standard perturbation methods only provide a local approximation, they cannot capture occasionally binding constraints without adaptation.
- Our analysis builds on an insight that has been used extensively in the literature on the effects of attaining the zero-lower bound on nominal interest rates.
- Occasionally binding constraints can be handled as different regimes of the same model.
 - Under one regime, the occasionally binding constraint is slack.
 - Under the other regime, the same constraint is binding.
- The piecewise linear solution method involves linking the first-order approximation of the model around the same point under each regime.

The Two Regimes

 Reference regime M1 (occasionally binding constraint is slack) Linearized system can be expressed as:

$$AE_tX_{t+1} + BX_t + CX_{t-1} + \varepsilon_t = 0,$$
 (M1)

 Alternative regime M2 (occasionally binding constraint binds) Linearized system (around same non-stochastic steady state) can be expressed as:

$$\mathcal{A}^* E_t X_{t+1} + \mathcal{B}^* X_t + \mathcal{C}^* X_{t-1} + \mathcal{D}^* + \mathcal{E}^* \epsilon_t = 0.$$
 (M2)

- Assume BK conditions hold in M1, and that absent shocks system is expected to return to M1 in finite time
- We are now in a position to define a solution for our model.

Definition

Definition

A solution for a model with an occasionally binding constraint is a function $f: X_{t-1} \times \epsilon_t \to X_t$ such that the conditions under system (M1) or the system (M2) hold, depending on the evaluation of the occasionally binding constraint.

• Alternatively, given initial conditions X_0 and the realization of a shock ϵ_1 , the function f can be expressed as a set of matrices \mathcal{P}_t , a set of matrices \mathcal{R}_t , and a matrix \mathcal{Q}_1 , such that:

$$X_1 = \mathcal{P}_1 X_0 + \mathcal{R}_1 + \mathcal{Q}_1 \epsilon_1, \tag{1}$$

$$X_t = \mathcal{P}_t X_{t-1} + \mathcal{R}_t \quad \forall t \in \{2, \infty\}. \tag{2}$$

• At each point in time the matrices \mathcal{P}_t , \mathcal{Q}_t , \mathcal{R}_t are time varying, even if they are functions of X_{t-1} and ϵ_1 only.

The algorithm

The algorithm employs a guess-and-verify approach.

- 1. We guess the periods in which each regime applies.
- 2. Second, we proceed to verify and, if necessary, update the initial guess.

Here are the details:

The Algorithm (continued)

1. Assume that from period T onwards (M1) applies in perpetuity. Then for any $t \geq T$, using standard perturbation methods, one can characterize the linear approximation to the decision rule for X_t , given X_{t-1} , as:

$$X_t = \mathcal{P}X_{t-1} + \mathcal{Q}\epsilon_t, \tag{M1DR}$$

Then for any $t \geq T$, $\mathcal{P}_t = \mathcal{P}$, $\mathcal{R}_t = 0$.

The Algorithm (continued)

2. Using $X_T = \mathcal{P}X_{T-1}$ and Equation (M2), the solution in period T-1 will satisfy the following matrix equation:

$$A^* \mathcal{P} X_{T-1} + B^* X_{T-1} + C^* X_{T-2} + D^* = 0.$$
 (3)

Solve the equation above for X_{T-1} to obtain the decision rule for X_{T-1} , given X_{T-2} :

$$X_{T-1} = -(A^* P + B^*)^{-1} (C^* X_{T-2} + D^*).$$
 (4)

Accordingly, $\mathcal{P}_{T-1} = -\left(\mathcal{A}^*\mathcal{P} + \mathcal{B}^*\right)^{-1}\mathcal{C}^*$ and $R_{T-1} = -(A^*P + B^*)^{-1}D^*$

Notice that the solution in T-1 combines elements from the reference and alternative regimes.

Continuing to substitute in this fashion, one can see that the "weights" depend on the duration of the regimes.

The Algorithm (continued)

- 3. Using $X_{T-1} = \mathcal{P}_{T-1}X_{T-2} + \mathcal{R}_{T-1}$ and either (M1) or (M2), as implied by the current guess of regimes, solve for X_{T-2} given X_{T-3} .
- 4. Iterate back in this fashion until X_0 is reached, applying either (M1)or (M2) at each iteration, as implied by the current guess of regimes.
- Depending on whether regime (M1) or (M2) is guessed to apply in period 1, $Q_1 = -(AP_2 + B)^{-1} \mathcal{E}$, or $Q_1 = -(A^*P_2 + B^*)^{-1} \mathcal{E}^*$.
- 6. Using the guess for the solution obtained in steps 1. to 5., compute paths for X to verify the current guess of regimes. If the guess is verified, stop. Otherwise, update the guess for when regimes (M1) and (M2) apply and return to step 1.

Features of the Solution

- Importantly, the solution that the algorithm produces is not just linear.
- The solution is highly nonlinear
 - The dynamics in one of the two regimes may crucially depend on how long one expects to be in that regime.
 - In turn, how long one expects to be in that regime depends on the state vector.
 - This interaction produces the high nonlinearity.

Advantages and Disadvantages

The piecewise linear solution inherits some disadvantages of a linear perturbation method:

- Just like any linear solution, it discards all information relative to the possibility of unforeseen future shocks;
- It does not capture precautionary behavior linked to the possibility that a constraint may become binding in the future, as a result of shocks yet unrealized.

But it also inherits some great advantages:

- It is computationally fast.
- It is applicable to models with a large number of state variables even when the curse of dimensionality renders other higher-quality methods inapplicable.
- It is general and application of our algorithm to different models requires only minimal programming.

Application 1: A Simple Asset Pricing Model

Consider the following asset pricing model

$$q_t = \beta(1-\rho)E_tq_{t+1} + \rho q_{t-1} - \sigma r_t + u_t$$

$$r_t = \max(\underline{r}, \phi q_t)$$

$$\beta$$
=0.99, ρ =0.5, ϕ =0.5, r=-0.01 σ =5 u_t AR(1) process with ρ_u =0.5 and σ_u =0.05

For realizations of u_t above a threshold, higher values of u_t lead to higher asset prices and, through the feedback rule, higher interest rates (and there is no difference with linearized solution).

For realizations of u_t below threshold, lower values of u_t lead to much lower asset prices, since interest rates are bounded below and cannot offset the decline in q_t .

Application 2 – RBC with constraint on investment

The planner maximizes households' utility

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\gamma} - 1}{1 - \gamma},$$

subject to the constraints:

$$C_t + I_t = A_t K_{t-1}^{\alpha},$$

$$K_t = (1 - \delta) K_{t-1} + I_t,$$

$$I_t \ge \phi I_{SS}.$$

The stochastic process for the technology A_t is given by

$$\ln A_t = \rho \ln A_{t-1} + \sigma \epsilon_t.$$

Set γ =2. Set ϕ = 0.975, implying that constraint binds about 40% of the time

The response of shocks to technology

Euler Equation Errors

See the paper for comparisons of distributions, particular moments, and welfare cost of adopting a piecewise linear solution relative to a nonlinear, virtually exact solution.

Focus here on Euler errors:

$$C_t^{-\gamma} - \lambda_t = \beta E_t \left(C_{t+1}^{-\gamma} \left(1 - \delta + \alpha A_{t+1} K_t^{\alpha - 1} \right) - (1 - \delta) \lambda_t \right).$$

We define the Euler equation error as:

$$err_{t} = \frac{-C_{t} + \left\{\lambda_{t} + E_{t}\beta\left[C_{t+1}^{-\gamma}\left((1-\delta) + \alpha A_{t+1}K_{t}^{\alpha-1}\right) - (1-\delta)\lambda_{t+1}\right]\right\}^{-\frac{1}{\gamma}}}{C_{t}}.$$

Euler Errors for Our Solution Algorithm

Euler Errors: Model with vs Model w/o Constraint

Euler Errors: Comparison with Full Nonlinear

Other Checks and Assessment

For each of the models considered, in the paper we also present:

- Comparisons of the distributions of individual endogenous variables:
- Comparisons of first and second moments;
- Frequency and duration of regime switching;
- A second measure of bounded rationality a compensating subsidy for switching from the use of nonlinear decision rules to piecewise linear rules.
- In most cases, we are pleased with the performance of our algorithm.

Impulse Responses: Calvo Model with ZLB

Impulse Responses: Model with Borrowing Limit

Estimation: Forming a Likelihood Function

- Can we use this solution technique when we are interested in estimating a model with occasionally binding constraints?
- Rewrite the solution to make explicit the relationship between reduced-form parameters and shocks:

$$X_t = \mathbf{P}(X_{t-1}, \epsilon_t) X_{t-1} + \mathbf{D}(X_{t-1}, \epsilon_t) + \mathbf{Q}(X_{t-1}, \epsilon_t) \epsilon_t$$

- This representation of the solution makes clear the basic endogeneity issue to be resolved to form a likelihood function.
- The standard Kalman filter allows for exogenous, but not endogenous variation in the reduced form coefficients.
- Viable options are simulation based filters, such as the Unscented Kalman filter or the Particle filter.
- Alternatively, consider an approach to forming the likelihood function that relies on a change in variables.

Estimation: Forming a Likelihood Function

The solution of the model takes the form:

$$X_t = \mathbf{P}(X_{t-1}, \epsilon_t) X_{t-1} + \mathbf{D}(X_{t-1}, \epsilon_t) + \mathbf{Q}(X_{t-1}, \epsilon_t) \epsilon_t$$

• ... and in terms of observables Y_t , through the observation equation $Y_t = \mathbf{H}X_t$, we have:

$$Y_t = \mathbf{HP}(X_{t-1}, \epsilon_t) X_{t-1} + \mathbf{HD}(X_{t-1}, \epsilon_t) + \mathbf{HQ}(X_{t-1}, \epsilon_t) \epsilon_t$$

One can initialize X_0 , and can recursively solve for ϵ_t , given X_{t-1} and the current realization of Y_t .

Estimation: Forming a Likelihood Function

- The standard change in variables argument requires forming the Jacobian of the inverse transformation.
- This Jacobian is notoriously costly to construct for numerical solutions.
- The local linearity implied by the piece-wise linear perturbation approach implies that this Jacobian is a byproduct of the solution.
- Given that ϵ_t is $NID(0, \Sigma)$, applying the change in variables argument implies that the log likelihood for Y can be written as:

$$\log L = -\frac{T}{2}\log(\det(\mathbf{\Sigma})) - \frac{1}{2}\sum_{t}^{T}\hat{\mathbf{e}}_{t}'\mathbf{\Sigma}^{-1}\hat{\mathbf{e}}_{t} - \sum_{t}^{T}\log(|\det(\mathbf{H}\mathbf{Q}_{t})|)$$

 Given parameters, solving, filtering and evaluating L takes seconds with serial processing in Matlab.

Estimation Example

- Can the estimation approach suggested in the previous slide work in practice?
- In a related paper, we show that the answer is yes.
- We estimate a variant of the Smets-Wouters model extended to include a housing sector following lacoviello (2005).
- We estimate the model subject to an occasionally binding constraint on housing wealth and subject to the zero lower bound on interest rates.
- The estimated model is described in "Collateral Constraints and Macroeconomic Asymmetries," available on Matteo's research page.

Conclusions

- The piecewise perturbation approach retains key properties of the standard linear perturbation approach while extending the range of models that can be solved.
- The quality of the solution is comparable to that of the linear perturbation method for models that exclude occasionally binding constraints.
- The key advantages the piece-wise perturbation approach are:
 - It can be deployed with minimal adaptation;
 - It is applicable to models with a large number of state variables;
 - It is computationally fast.
- Our codes are available on Matteo's research page. Try them out.