
1 Solving a Linear Approximation of the Real Business

Cycle model with Fixed Labor Supply

Note: The material in these notes is adapted from a handout that Jonathan Heathcote prepared

for a graduate class at Georgetown University.

1.1 Model description

Households seek to maximize utility given by:
∞∑

t=0

Etβ
tlog(ct).

Households have access to a production technology given by:

yt = eztkα
t ,

where zt is a shock process governed by:

zt+1 = ρzt + εt+1, (1)

where εt+1 is normally and independently distributed with mean 0 and variance σ2. The law of

motion for capital is

kt+1 = (1− δ)kt + it.

Finally, the resource constraint for the economy implies that

ct + it = yt.

1.2 Necessary conditions for an equilibrium

To find the necessary conditions for an equilibrium setup the households maximization problem

using the following Lagrangian:

max
ct,Kt+1,it,λt,γt

L =

{ ∞∑

t=0

βtu(ct) (2)

+βtλt [ct + it − eztkα
t ] (3)

+βtγt [(1− δ)kt + it − kt+1]
}

(4)



N.B.: the way in which you write the lagrangian constraints affects the interpretation of the

multiplier, but does not affect the final solution.

The first-order conditions of the Lagrangian with respect to the maximization objects

above are given by:

∂L

∂ct

=
1

ct

− λt = 0 (5)

∂L

∂kt+1

= βEt

[
λt+1αezt+1kα−1

t+1

]
− γt + βEt [γt+1(1− δ)] = 0 (6)

∂L

∂it
= λt − γt = 0 (7)

∂L

∂λt

= eztkα
t − ct − it = 0 (8)

∂L

∂γt

= (1− δ)kt + it − kt+1 = 0 (9)

The necessary conditions for an equilibrium of the model are given by all the first-order

conditions above, plus the shock process in equation (1).

1.3 Some manual intervention

Before attempting to solve the model, realize that the conditions for an equilibrium listed above

can be reduced to a smaller set of equations. This manual intervention is simple in the case of

this model, but might be substantially more involved for other models. Later, we are going to

learn how to deploy some numerical techniques to avoid it altogether.

Using equation (7) and equation (5) notice that

γt =
1

ct

(10)

Substituting γt from equation (10) into equation (6) and collecting terms, we obtain:

Etβ

[
1

ct+1

(
1− δ + αezt+1k

(α−1)
t+1

)]
=

1

ct

. (11)

Solving the resource constraint in equation (8) for it and substituting in equation (9) one obtains

kt+1 = (1− δ)kt + eztkα
t − ct. (12)

We have now expressed the necessary conditions for an equilibrium as three equations (11),

(12), and (1) and three variables k,c, and z.



1.4 Model calibration and non-stochastic steady states

Before we can compute the steady state values of k, c, and z, we need to choose numerical

values for the parameters in the model. Let δ = 0.025, β = 0.99, α = 0.33, and ρ = 0.95.

Let “*” denote steady state values. From equation (1), z∗ = 0. Working on equation (11)

β
[

1

c∗
(1− δ + αk∗α−1)

]
=

1

c∗
. (13)

This implies that

k∗ =

[
1

α

(
1

β
− 1 + δ

)] 1
α−1

(14)

Finally, from equation(12), k∗ = (1− δ)k∗ + k∗α − c∗, which yields

c∗ = k∗α − δk∗. (15)

Using the parameter choices above, the numerical steady states are: z∗ = 0, k∗ ≈ 28.3, c∗ ≈ 2.3.

1.5 Linearizing the model

Let a “ˆ” denote a variable’s deviation from its non-stochastic steady state value, i.e., ĉt = ct−c∗.

Using the first-order Taylor series expansion around the non-stochastic steady state, one can

express the necessary conditions for the model’s equilibrium as:

− β

c∗2
(1− δ + αk∗α−1)Etĉt+1 +

β

c∗
α(α− 1)k∗(α−2)Etk̂t+1 +

β

c∗
αk∗α−1Etẑt+1 = − 1

c∗2
ĉt (16)

k̂t+1 = −ĉt + (1− δ + αk∗α−1)k̂t + k∗αẑt (17)

ẑt+1 = ρẑt + ε̂t+1 (18)

Next, deal with the conditional expectation operator. Start with Etct + 1. Consider the

identity: Etct+1 = ct+1 + (Etct+1 − ct+1). This is simply saying that current expectation of

next period’s consumption can be expressed as the realization of next period’s consumption

plus an expectational error. Trivially, this relationship will also hold in deviation from steady



state: Etĉt+1 = ĉt+1 + (Etĉt+1 − ĉt+1). Now, introduce a little more notation. Let

ω̂ct+1 = (Etĉt+1 − ĉt+1), (19)

ω̂kt+1 = (Etk̂t+1 − k̂t+1), (20)

ω̂zt+1 = (Etẑt+1 − ẑt+1). (21)

Solve definitions (19) to (21) for Etĉt+1, Etk̂t+1, and Etẑt+1, respectively and substitute into

equation (16). Then, one obtains:

− β

c∗2
(1− δ + αk∗α−1)[ĉt+1 + ω̂ct+1]

+
β

c∗
α(α− 1)k∗(α−2)[k̂t+1 + ˆωkt+1]

+
β

c∗
αk∗α−1[ẑt+1 + ω̂zt+1] = − 1

c∗2
ĉt (22)

Rewrite equations (22), (17), (18) in matrix form:

ψx̂t+1 + Jω̂t+1 = φx̂t + êt+1, (23)

where

x̂s =




ĉs

k̂s

ẑs




, ω̂s =




ω̂cs

ω̂ks

ω̂zs




, ês =




0

0

ε̂s




and where

ψ =




− β
c∗2 (1− δ + αk∗α−1) β

c∗α(α− 1)k∗(α−2) β
c∗αk∗α−1

0 1 0

0 0 1




,

J =




ψ11 ψ12 ψ13

0 0 0

0 0 0




, φ =




− 1
c∗2 0 0

−1 (1− δ + αk∗α−1) k∗α

0 0 ρ




.



Equation (23) can be simplified a little more, so as to yield:

ψx̂t+1 = φx̂t + f̂t+1 with f̂t+1 =




−ψ1ω̂t+1

0

ε̂t+1




(24)

From here onwards, we need to proceed numerically.

1.6 Case 1: ψ is invertible

The simplifications we brought to the necessary conditions for an equilibrium have ensured that

ψ is invertible. We will tackle what to do when ψ is not invertible later on.

Premultiplying equation (24) by ψ−1, one can see that:

x̂t+1 = ψ−1φx̂t + ψ−1f̂t+1 (25)

You might be tempted to stop here, but you’d not be quite done yet. Remember that f̂t+1 is

a function of expectational errors. We need to solve for those. We’ll get there in what might

initially appear a rather circuitous route.

Let A = ψ−1φ. The next step is to find the eigenvalues and eigenvectors of A. Place the

eigenvalues of A along the diagonal of the matrix D. Arrange the corresponding eigenvectors of

A along the columns of the matrix V . Fortunately you don’t have to do this by hand. Matlab

provides the function eig to construct the matrices V and D. Premultiplying equation (25) by

V −1, thus

V −1x̂t+1 = V −1Ax̂t + V −1ψ−1f̂t+1

Remember that AV = V D. Thus, V −1AV = D. But then, V −1A = DV −1. Accordingly:

V −1x̂t+1 = DV −1x̂t + V −1ψ−1f̂t+1 (26)

Next, change variables, let ŷs = V −1x̂s. Accordingly, we can rewrite the equation (26) above

as:

ŷt+1 = Dŷt + V −1ψ−1f̂t+1 (27)



This last transformation puts us in a really good position. We have written the necessary

conditions for an equilibrium in our model so that each condition involves only one variable

(albeit, a linear combination of the original variables) and some linear combination of the

expectational errors and the innovation to technology. Let the diagonal entries of D be denoted

by di. Furthermore, let η = V −1ψ−1. Accordingly, each equation can be written as:

ŷit+1 = diŷit + ηrow(i)f̂t+1. (28)

Notice that if |di| > 1, then taking the conditional expectation at time t and iterating

on (28) implies that Etŷis might eventually explode, i.e. lims→∞ |Etŷis| = ∞ under some

conditions. When |di| > 1, the di eigenvalue is said to be explosive.

To see the argument more clearly:

Etŷit+1 = diEtŷit + Etηrow(i)f̂t+1, (29)

but by rational expectations the current expectation of future expectational errors is 0. Thus,

Etηrow(i)f̂t+1 = 0 and

Etŷit+1 = diŷit. (30)

Iterating forward

1

di

Etŷit+2 = ŷit+1 (31)

and substituting into (30), one can see that

EtEt+1ŷit+2 = d2
i ŷit. (32)

Using the law of iterated expectations:

Etŷit+2 = d2
i ŷit. (33)

Iterating forward some more, the power on the term di will keep growing, which is the basis for

the claim of explosiveness above when ŷit is nonzero.

Now, suppose we impose a non-explosiveness condition of the form lims→∞ Etyis = 0.

The interpretation of this condition is that far enough in the future, we should expect that all



variables converge in expectation to their non-stochastic steady state values. If |di| > 1, this

condition can only be satisfied if ŷit is 0 at all times.

Given our parametric choices, we can confirm that, for the model we are considering,

we indeed have one explosive eigenvalue (and 2 non-explosive eigenvalues), which ensures that

there will be a unique rational expectation equilibrium in the neighborhood of the non-stochastic

steady state (see Blanchard and Kahn). Then, we know that for some i, ŷit = 0 ∀ t. This can

buy us two interesting simplifications.

Simplification # 1

How about the expectational errors? Given that yit = 0 ∀ t, from equation (28), we have

that

ηrow(i)f̂t+1 = 0.

Remembering the definition of f̂ , the above implies

ηrow(i)




−ψ1ω̂t+1

0

ε̂t+1




= 0, (34)

which can be used to solve for ψ1ω̂t+1. Thus,

ψ1ω̂t+1 =
ηi,3

ηi,1

ε̂t+1. (35)

The above equation has some interesting economic interpretation. The expectational errors are

linearly related to the innovation to the productivity shock process ε̂t+1.

At this point we could declare victory. For any set of predetermined conditions x̂t =

(ĉt, k̂t, ẑt)
′, and innovation ε̂t, we can use V −1 to map those conditions into a vector ŷt. Using

the restriction in equation (35), we can construct f̂t+1. Then, using equation (27) we can obtain

ŷt+1, which can be transformed back into x̂t+1 using V .

Simplification # 2

While we could have stopped at simplification #1, a little more algebra will yield even

more rewards.



Since ŷis = (V −1)row(i)x̂s, imposing the non-explosiveness condition, we have that:

yit =
∑

j

(V −1)ij = (V −1)i1ct + (V −1)i2kt + (V −1)i3zt = 0 (36)

We can use this relationship to solve for one of the variables in terms of the other two. Pick ĉt.

Thus,

ĉt =
(

ck cz

)



kt

zt


 , (37)

where ck = − (V −1)i2

(V −1)i1
and cz = − (V −1)i3

(V −1)i1
. In general, for each explosive eigenvalue, we can solve

one variable out of the system.

Finally, we can substitute the restrictions we have found for ĉt and ψ1ω̂t+1 into the the

original system of equations in matrix form. Focus on the second and third equation in (25).

They can be rewritten as:




k̂t+1

ẑt+1


 =




A21 A22 A23

A31 A32 A33







ĉt

k̂t

ẑt




+




ψ−1
row(2)

ψ−1
row(3)







−ηi,3

ηi,1
ε̂t+1

0

ε̂t+1




.

Substituting equation (37) and (35), into the above:




k̂t+1

ẑt+1


 =







A21

A31




(
ck cz

)
+




A22 A23

A32 A33







k̂t

ẑt





 +




ψ−1
row(2)

ψ−1
row(3)







−ηi,3

ηi,1
ε̂t+1

0

ε̂t+1




.

Remember that the last two rows of ψ had ones along the diagonal and zeros every-

where else. That’s going to carry through to its inverse, ψ−1. So, (ψ−1)row(2) = {0, 1, 0}, and

(ψ−1)row(3) = {0, 0, 1}, which implies:




k̂t+1

ẑt+1


 =







A21

A31




(
ck cz

)
+




A22 A23

A32 A33







k̂t

ẑt





 +




0

ε̂t+1


 .



1.7 Case 2: ψ is singular

The algebraic manipulations we performed onto the system of necessary conditions for an equi-

librium ensured that ψ in equation (23) would be invertible. In fact, if we had not substituted

all the identities out of the system, ψ would not have been invertible. Ensuring the invert-

ibility of ψ is too laborious a task in all but the simplest models we are interested in solving.

Fortunately, we can deploy some more matrix algebra to help us.

To fix ideas, let’s work with a very simple example of a setup in which ψ is not going to

be invertible. Consider again the basic RBC model described earlier, but this time, rather than

using the resource constraint yt = ct + it to substitute out it from the capital accumulation

equation kt+1 = (1 − δ)kt + it, ignore this simplification. Upon linearization, the necessary

conditions for an equilibrium in our model can then be written as:

− β

c∗2
(1− δ + αk∗α−1)Etĉt+1 +

β

c∗
α(α− 1)k∗(α−2)Etk̂t+1 +

β

c∗
αk∗α−1Etẑt+1 = − 1

c∗2
ĉt (38)

k̂t+1 = (1− δ)k̂t + ît (39)

0 = ĉt − αk∗α−1k̂t + ît − k∗αẑt (40)

ẑt+1 = ρẑt + ε̂t+1 (41)

Proceeding analogously to our earlier case, rewrite equations (38) to (41) in matrix form, so as

to yield:

φx̂t+1 = ψx̂t + f̂t+1.

Departing slightly from the earlier method, this time, if we are particular about the order in

which we arrange equations and variables, it will have a big payoff later. The reasons, will

become apparent in a little while.

We want to order equations and variables according to these rules:

1. Predetermined variables (e.g., values for shocks, capital stocks) come first, non predeter-

mined variables (e.g., consumption) second.

2. Inter-temporal equations (e.g. law of motion for capital, shock processes) are placed

above, intratemporal equations below.



3. The inter-temporal equations that have expectational errors, such as the Euler equation

for consumption, are placed last among the set of intertemporal equations.

One ordering of the necessary conditions for an equilibrium for the model under study

that satisfies the rules above is: (41), (39), (38), (40). One ordering for the variables in the

system that satisfies the rules above is ẑs, k̂s, ĉs, ît.

Adopting the ordering above for equations and variables, we obtain:

x̂s =




ẑt

k̂t

ĉt

ît




, f̂s =




ε̂s

0

−ψ1ω̂s

0




ω̂s =




ω̂zs

ω̂ks

ω̂cs

ω̂is




,

ψ =




1 0 0 0

0 1 0 0

β
c∗αk∗α−1 β

c∗α(α− 1)k∗(α−2) − β
c∗2 (1− δ + αk∗α−1) 0

0 0 0 0




,

φ =




ρ 0 0 0

0 (1− δ) 0 1

0 0 − 1
c∗2 0

−k∗α −αk∗α−1 1 1




.

Inspecting ψ, the last row of zeros (or the last column) make it singular.

Fortunately, we can still proceed much in the same way as when ψ is invertible, but we

just need to be a little more patient with the algebra. For starters, use the generalized complex

Schur decomposition on the matrices φ and ψ. If you have never used this decomposition before,

don’t panic. It is still a cause of great happiness to me that Matlab can perform this task for

us with the command qz. The generalized complex Schur decomposition can be applied to any

pair of square matrices φ and ψ. It yields matrices Q,Z, φ4, ψ4 that have some interesting



properties:

QφZ = φ4

QψZ = ψ4

QHQ = I, ZHZ = I,

where, “H” denotes the transpose of the complex conjugate, and I the identity matrix. One

of the beautiful properties of this decomposition is that φ4 and ψ4 are (upper) triangular

matrices. Furthermore, the generalized eigenvalues of φ4 and ψ4 are the same as those of the

original matrices φ and ψ. In fact, the generalized eigenvalues can simply be found by dividing

one by one the diagonal entries of φ4 by the diagonal entries of ψ4.

The Schur decomposition is not unique. We want to reorder it so that the stable eigen-

values are associated with the upper rows of φ4 and ψ4, and the unstable eigenvalues with the

lower rows. This can be done with the Matlab command ordqz.

Let’s go back to our system of conditions for an equilibrium in matrix form φx̂t+1 =

ψx̂t + f̂t+1. We can now rewrite it as:

QHφ4ZH x̂t+1 = QHψ4ZH x̂t + f̂t+1. (42)

Premultiplying through by Q,

φ4ZH x̂t+1 = ψ4ZH x̂t + Qf̂t+1. (43)

As you might predict, this invites a natural change in variables. Let ŷs = ZH x̂s. Then,

φ4ŷt+1 = ψ4ŷt + Qf̂t+1. (44)

Next let’s partition ŷs into two parts ŷs =




ŷSs

ŷUs


. The partition ŷSs has nS rows, as many

as the number of stable generalized eigenvalues of φ and ψ. The partition ŷUs has nU rows,

as many as the number of unstable generalized eigenvalues. Applying the same partitioning to

equation (44), one obtains:



ψ411 ψ412

ψ421 ψ422







ŷSt+1

ŷUt+1


 =




φ411 φ412

φ421 φ422







ŷSt

ŷUt


 +




Q11 Q12

Q21 Q22







f̂St+1

f̂Ut+1


 (45)



Thus, for example, ψ411 has dimensions nS × nS.

Since all the entries of ψ421 and of φ421 are zeros, the non-explosiveness condition implies

that ŷUs = 0 for all s. To see this, notice that φ422V = ψ4V D, where V collects the generalized

eigenvectors of φ422 and ψ422, and D is a diagonal matrix whose non-zero entries are the

generalized eigenvalues. By construction, the generalized eigenvalues of φ422 and ψ422 are

unstable. So, we can construct a similar argument to the one we used in the previous section,

in the case of ψ invertible, to show that the non-explosiveness condition does imply ŷUs = 0 for

all s.

Note that the change in variables we used above also implies that x̂s = Zŷs. Partititioning

the system leads to:



x̂St

x̂Ut


 =




Z11 Z12

Z21 Z22







ŷSt

ŷUt




But, since ŷs = 0 ∀s, we have that x̂St = Z11ŷSt, and also that x̂Ut = Z21ŷUt. Assuming that

Z11 is invertible, ŷSt = (Z11)
−1x̂St. But then,

x̂Ut+1 = Z21Z
−1
11 x̂St+1 (46)

Notice that, by construction, if the Blanchard-Kahn conditions are satisfied, x̂Ut only holds

jump variables, and x̂St only holds non-jump predetermined variables. So, equation (46) gives

us a way do deduce all the jump variables from the predetermined variables, without any

additional recourse to the innovations to the shock processes other than their effects already

embedded in x̂St+1.

Finally, we need to solve for x̂St+1. From equation (45), using the result from the non-

explosiveness condition that ŷs = 0 ∀ s, we have that

ψ411ŷSt+1 = φ411ŷSt +
(

Q11 Q12

)



f̂St+1

f̂Ut+1


 (47)

But the non-explosiveness condition also implies

(
Q21 Q22

)



f̂St+1

f̂Ut+1


 = 0



Assuming that Q22 is invertible, we get that

f̂Ut+1 = −Q−1
22 Q21f̂St+1 (48)

Notice that, by construction, f̂St+1 will hold innovations to shocks and no expectational errors.

Conversely, f̂St+1 will hold expectational errors, and no innovations. Accordingly, equation (48)

gives us a way to retrieve expectational errors from fundamental innovations. The Blanchard-

Kahn conditions for uniqueness, given our ordering rules, will ensure invertibility of Q22.

Substituting equation (48) into equation (47), and remembering that ŷSt = Z−1
11 x̂St, one

obtains

ψ411(Z11)
−1x̂St+1 = φ411(Z11)

−1x̂St +
(

Q11 Q12

)



f̂St+1

−Q−1
22 Q21f̂St+1




Premultiplying by Z11ψ
−1
411 and collecting terms, then we can rewrite the equation above as

x̂St+1 = Z11ψ
−1
411φ411Z

−1
11 x̂St + Z−1

11 ψ411

(
Q11 −Q12Q

−1
22 Q21

)
f̂St+1. (49)

Equations (49) and (46) give us a way to solve for all variables of interest. In fact, with

just one more set of painless substitutions, they can be rewritten in a more visually appealing

way:

x̂St+1 = Ax̂St + Bf̂St+1 (50)

x̂Ut+1 = Cx̂St+1 (51)

A = Z11ψ
−1
411φ411(Z11)

−1 (52)

B = Z11ψ
−1
411

(
Q11 −Q12Q

−1
22 Q21

)
(53)

C = Z21(Z11)
−1, (54)

which completes the “A,B,C” of model solving.


