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1 Solving a Linear Approximation of the Real Business

Cycle model with Fixed Labor Supply

This handout is meant as a guide to the steps involved in obtaining the first-order approximation

to the solution of a dynamic stochastic general equilibrium model. As an example, it considers

a simple model of real business cycles with fixed labor supply.

1.1 Model description

Households seek to maximize utility given by:

∞
∑

t=0

Etβ
tlog(ct).

Households have access to a production technology given by:

yt = eztkα
t ,

where zt is a shock process governed by:

zt+1 = ρzt + ǫt+1, (1)

where ǫt+1 is normally and independently distributed with mean 0 and variance σ2. The law of

motion for capital is

kt+1 = (1 − δ)kt + it.



Finally, the resource constraint for the economy implies that

ct + it = yt.

1.2 Necessary conditions for an equilibrium

To find the necessary conditions for an equilibrium setup the households maximization problem

using the following Lagrangian:

max
ct,kt+1,it,λt,γt

L =

{

∞
∑

t=0

βtu(ct) (2)

+βtλt [e
ztkα

t − ct − it] (3)

+βtγt [kt+1 − (1 − δ)kt − it]
}

(4)

N.B.: the way in which you write the lagrangian constraints affects the interpretation of the

multiplier, but does not affect the final solution.

The first-order conditions of the Lagrangian with respect to the maximization objects

above are given by:

∂L

∂ct
=

1

ct
− λt = 0 (5)

∂L

∂kt+1
= βEt

[

λt+1αe
zt+1kα−1

t+1

]

+ γt − βEt [γt+1(1 − δ)] = 0 (6)

∂L

∂it
= −λt − γt = 0 (7)

∂L

∂λt

= eztkα
t − ct − it = 0 (8)

∂L

∂γt

= kt+1 − (1 − δ)kt − it = 0 (9)

The necessary conditions for an equilibrium of the model are given by all the first-order

conditions above, plus the shock process in equation (1).

1.3 Some manual intervention

Before attempting to solve the model, realize that the conditions for an equilibrium listed above

can be reduced to a smaller set of equations. This manual intervention is simple in the case of



this model, but might be substantially more involved for other models. Later, we are going to

learn how to deploy some numerical techniques to avoid it altogether.

Using equation (7) and equation (5) notice that

λt =
1

ct
, γt = −

1

ct
. (10)

Substituting λt and γt from equations (10) into equation (6) and collecting terms, we obtain:

βEt

[

1

ct+1

(

1 − δ + αezt+1k
(α−1)
t+1

)

]

=
1

ct
. (11)

Solving the resource constraint in equation (8) for it and substituting in equation (9) one obtains

kt+1 = (1 − δ)kt + eztkα
t − ct. (12)

We have now expressed the necessary conditions for an equilibrium as three equations (11),

(12), and (1) and three variables k,c, and z.

1.4 Model calibration and non-stochastic steady states

Before we can compute the steady state values of k, c, and z, we need to choose numerical

values for the parameters in the model. Let δ = 0.025, β = 0.99, α = 0.33, and ρ = 0.95.

Let “*” denote steady state values. From equation (1), z∗ = 0. Working on equation (11)

β

[

1

c∗
(1 − δ + αk∗α−1)

]

=
1

c∗
. (13)

This implies that

k∗ =

[

1

α

(

1

β
− 1 + δ

)] 1

α−1

(14)

Finally, from equation(12), k∗ = (1 − δ)k∗ + k∗α − c∗, which yields

c∗ = k∗α − δk∗. (15)

Using the parameter choices above, the numerical steady states are: z∗ = 0, k∗ ≈ 28.3, c∗ ≈ 2.3.



1.5 Linearizing the model

Let a “ˆ” denote a variable’s deviation from its non-stochastic steady state value, i.e., ĉt = ct−c
∗.

Using the first-order Taylor series expansion around the non-stochastic steady state, one can

express the necessary conditions for the model’s equilibrium as:

−
β

c∗2
(1 − δ + αk∗α−1)Etĉt+1 +

β

c∗
α(α− 1)k∗(α−2)Etk̂t+1 +

β

c∗
αk∗α−1Etẑt+1 = −

1

c∗2
ĉt (16)

k̂t+1 = −ĉt + (1 − δ + αk∗α−1)k̂t + k∗αẑt (17)

ẑt+1 = ρẑt + ǫ̂t+1 (18)

Next, deal with the conditional expectation operator. Start with Etct+1. Consider the iden-

tity: Etct+1 = ct+1 + (Etct+1 − ct+1). This is simply saying that current expectation of next

period’s consumption can be expressed as the realization of next period’s consumption plus an

expectational error. Trivially, this relationship will also hold in deviation from steady state:

Etĉt+1 = ĉt+1 + (Etĉt+1 − ĉt+1). Now, introduce a little more notation. Let

ω̂ct+1 = (Etĉt+1 − ĉt+1), (19)

ω̂kt+1 = (Etk̂t+1 − k̂t+1), (20)

ω̂zt+1 = (Etẑt+1 − ẑt+1). (21)

Solve definitions (19) to (21) for Etĉt+1, Etk̂t+1, and Etẑt+1, respectively and substitute into

equation (16). Then, one obtains:

−
β

c∗2
(1 − δ + αk∗α−1)[ĉt+1 + ω̂ct+1]

+
β

c∗
α(α− 1)k∗(α−2)[k̂t+1 + ˆωkt+1]

+
β

c∗
αk∗α−1[ẑt+1 + ω̂zt+1] = −

1

c∗2
ĉt (22)

Rewrite equations (22), (17), (18) in matrix form:

ψx̂t+1 + Jω̂t+1 = φx̂t + êt+1, (23)



where

x̂s =















ĉs

k̂s

ẑs















, ω̂s =















ω̂cs

ω̂ks

ω̂zs















, ês =















0

0

ǫ̂s















and where

ψ =















− β

c∗2 (1 − δ + αk∗α−1) β

c∗
α(α− 1)k∗(α−2) β

c∗
αk∗α−1

0 1 0

0 0 1















,

J =















ψ11 ψ12 ψ13

0 0 0

0 0 0















, φ =















− 1
c∗2 0 0

−1 (1 − δ + αk∗α−1) k∗α

0 0 ρ















,

where ψ11, ψ12, and ψ1,3 denote the relevant entries of the matrix ψ. Equation (23) can be

simplified a little more, so as to yield:

ψx̂t+1 = φx̂t + f̂t+1 with f̂t+1 =















−ψrow(1)ω̂t+1

0

ǫ̂t+1















, (24)

where ψrow(1) denotes the first row of the matrix ψ.

From here onwards, we need to proceed numerically.

1.6 Case 1: ψ is invertible

The simplifications we brought to the necessary conditions for an equilibrium have ensured that

ψ is invertible.

Premultiplying equation (24) by ψ−1, one can see that:

x̂t+1 = ψ−1φx̂t + ψ−1f̂t+1 (25)



You might be tempted to stop here, but you’d not be quite done yet. Remember that f̂t+1 is

a function of expectational errors. We need to solve for those. We’ll get there in what might

initially appear a rather circuitous route.

Let A = ψ−1φ. The next step is to find the eigenvalues and eigenvectors of A. Place the

eigenvalues of A along the diagonal of the matrix D. Arrange the corresponding eigenvectors of

A along the columns of the matrix V . Fortunately you don’t have to do this by hand. Matlab

provides the function eig to construct the matrices V and D. Premultiplying equation (25) by

V −1, thus

V −1x̂t+1 = V −1Ax̂t + V −1ψ−1f̂t+1

Remember that AV = V D. Thus, V −1AV = D. But then, V −1A = DV −1. Accordingly:

V −1x̂t+1 = DV −1x̂t + V −1ψ−1f̂t+1 (26)

Next, change variables, let ŷs = V −1x̂s. For the new variables, we can rewrite the equation (26)

above as:

ŷt+1 = Dŷt + V −1ψ−1f̂t+1. (27)

This last transformation puts us in a really good position. We have written the necessary

conditions for an equilibrium in our model so that each condition involves only one variable

(albeit, a linear combination of the original variables) and some linear combination of the

expectational errors and the innovation to technology. Let the diagonal entries of D be denoted

by di. Furthermore, let η = V −1ψ−1. Accordingly, each equation can be written as:

ŷit+1 = diŷit + ηrow(i)f̂t+1. (28)

Notice that if |di| > 1, then taking the conditional expectation at time t and iterating

on (28) implies that Etŷis might eventually explode, i.e. lims→∞ |Etŷis| = ∞ under some

conditions. When |di| > 1, the di eigenvalue is said to be explosive.

To see the argument more clearly:

Etŷit+1 = diEtŷit + Etηrow(i)f̂t+1, (29)



but by rational expectations the current expectation of future expectational errors is 0. Thus,

Etηrow(i)f̂t+1 = 0 and

Etŷit+1 = diŷit. (30)

Iterating forward

1

di

Et+1ŷit+2 = ŷit+1 (31)

and substituting into (30), one can see that

EtEt+1ŷit+2 = d2
i ŷit. (32)

Using the law of iterated expectations:

Etŷit+2 = d2
i ŷit. (33)

Iterating forward some more, the power on the term di will keep growing, which is the basis for

the claim of explosiveness above when ŷit is nonzero.

Now, suppose we impose a non-explosiveness condition of the form lims→∞Etyis = 0.

The interpretation of this condition is that far enough in the future, we should expect that all

variables converge in expectation to their non-stochastic steady state values. If |di| > 1, this

condition can only be satisfied if ŷit is 0 at all times.

Given our parametric choices, we can confirm that, for the model we are considering,

we indeed have one explosive eigenvalue (and 2 non-explosive eigenvalues), which ensures that

there will be a unique rational expectation equilibrium in the neighborhood of the non-stochastic

steady state (see Blanchard and Kahn). Then, we know that for some i, ŷit = 0 ∀ t. This can

buy us two interesting simplifications.

Simplification # 1

How about the expectational errors? Given that yit = 0 ∀ t, where i is such that |di| > 1,

from equation (28) we have that

ηrow(i)f̂t+1 = 0.



Remembering the definition of f̂ , the above implies

ηrow(i)















−ψrow(1)ω̂t+1

0

ǫ̂t+1















= 0, (34)

which can be used to solve for ψ1ω̂t+1. Thus,

ψ1ω̂t+1 =
ηi,3

ηi,1

ǫ̂t+1. (35)

The above equation has some interesting economic interpretation. The expectational errors are

linearly related to the innovation to the productivity shock process ǫ̂t+1.

At this point we could declare victory. For any set of predetermined conditions x̂t =

(ĉt, k̂t, ẑt)
′, and innovation ǫ̂t, we can use V −1 to map those conditions into a vector ŷt. Using

the restriction in equation (35), we can construct f̂t+1. Then, using equation (27) we can obtain

ŷt+1, which can be transformed back into x̂t+1 using V .

Simplification # 2

While we could have stopped at simplification #1, a little more algebra will yield even

more rewards.

Since ŷis = (V −1)row(i)x̂s, imposing the non-explosiveness condition, we have that:

yit =
∑

j

(V −1)ij = (V −1)i1ct + (V −1)i2kt + (V −1)i3zt = 0 (36)

We can use this relationship to solve for one of the variables in terms of the other two. Pick ĉt.

Thus,

ĉt =
(

ck cz

)







kt

zt





 , (37)

where ck = − (V −1)i2

(V −1)i1
and cz = − (V −1)i3

(V −1)i1
. In general, for each explosive eigenvalue, we can solve

one variable out of the system.

Finally, we can substitute the restrictions we have found for ĉt and ψ1ω̂t+1 into the the

original system of equations in matrix form. Focus on the second and third equation in (25).



They can be rewritten as:







k̂t+1

ẑt+1





 =







A21 A22 A23

A31 A32 A33





















ĉt

k̂t

ẑt















+







ψ−1
row(2)

ψ−1
row(3)





















−
ηi,3

ηi,1
ǫ̂t+1

0

ǫ̂t+1















.

Substituting equation (37) and (35), into the above:







k̂t+1

ẑt+1





 =













A21

A31







(

ck cz

)

+







A22 A23

A32 A33













k̂t

ẑt











+







ψ−1
row(2)

ψ−1
row(3)





















−
ηi,3

ηi,1
ǫ̂t+1

0

ǫ̂t+1















.

Remember that the last two rows of ψ had ones along the diagonal and zeros every-

where else. That’s going to carry through to its inverse, ψ−1. So, (ψ−1)row(2) = {0, 1, 0}, and

(ψ−1)row(3) = {0, 0, 1}, which implies:







k̂t+1

ẑt+1





 =













A21

A31







(

ck cz

)

+







A22 A23

A32 A33













k̂t

ẑt











+







0

ǫ̂t+1





 .


