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1 Overview of the Kalman Filter

A good reference to pick up the basics of the Kalman filter is the chapter on the Kalman filter

in Hamilton’s time series volume. A more in depth treatment of the Kalman filter can be found

in Durbin and Koopman.

The state space representation used in the setup of the Kalman filter includes two compo-

nents: a state equation, which describes the evolution of the state variables, and an observation

equation, which relates the state variables to the observed variables.

State equation

ξt+1 = Fξt + vt+1, where E(vt+1v
′

t+1) = Q.

Assume that vt is multivariate normal.

Observation equation

yt = H ′ξt.

1.1 Linear Least Squares Forecasts

Define ξ̂t+1 as the projection of ξt+1 on the history of yt.

Define Pt+1|t to be the mean squared error matrix associated with the projection

Pt+1|t = E[(ξt+1 − ξ̂t+1|t)(ξt+1 − ξ̂t+1|t)
′]

The Kalman filter gives us a way to recursively calculate ξ̂t+1|t.



The Kalman Filter Recursion

ξ̂t+1|t = F ξ̂t|t−1 + Kt(yt − H ′ξ̂t|t−1)

where Kt is the Kalman gain matrix

Kt = FPt|t−1H(H ′Pt|t−1H)−1

In turn, the mean square error matrix is updated following

Pt+1|t = (F − KtH
′)Pt|t−1(F

′
− HK ′

t) + Q

Steady-State Kalman Filter

If the eigenvalues of F are all within the unit circle and Q is strictly positive definite then

Pt+1/t will converge to P .

Kt+1 will converge to K.

Thus the Kalman filter recursion becomes

ξ̂t+1|t = F ξ̂t|t−1 + K(yt − H ′ξ̂t|t−1)

This fact can be used to speed the recursion when dealing with large matrices and large

datasets.

1.2 Likelihood Function

If all the state variables were observed, we could form the likelihood using

vt+1 = ξt+1 − Fξt,

but strategy fails when ξt is not directly observed.

Instead use the fact that

at = K−1

t (ξ̂t+1|t − F ξ̂t|t−1)



where at = (yt − H ′ξ̂t|t−1) is the forecast error for the observed variables.

Notice that at is uncorrelated over time by construction. If vt is multivariate normal, then at

is also multivariate normal.

The var/cov matrix of at is given by H ′Pt|t−1H .
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1.3 Initialization schemes

To form the unconditional likelihood, set ξ̂1|0 = Eξt and set P1|0 to unconditional variance

covariance of ξt, where the variance is

E [ξtξ
′
t] = E [(Fξt−1 + vt)(Fξt−1 + vt)

′] ,

which can be written as:

Σ = FΣF ′ + Q.

See Hamilton on how to use the properties of the vec operator to solve the equation above for

Sigma.

This strategy has the drawback that ξ = 0 might imply structural innovations so outlandish

that they have a disproportionate weight in the likelihood when the sample is small. Another

drawback is that this scheme is viable only when ξt is stationary.

1.4 Fixed and known initial point

Set ξ0 = 0.

Set P0 = 0.

To avoid polluting the likelihood, train the filter by running the updates on a pre-sample, but

not incorporating the information into the likelihood.



1.5 The augmented Kalman filter

let ξ0 = z0

Consider two possibilities:

1) let var(z0) = kI where k → ∞ (Rosenberg)

2) let z0 be non-stochastic but unknown (de Jong), estimate jointly with other parameters

These schemes also work when some of the state variables are trending.

1.6 Filtering and Smoothing

The history of ξ̂t|t−1 is referred to as the filtered estimates of the state variables. Notice that

the information set used in forming these estimates varies through time, and incorporates new

information as we go along.

The Kalman filter can also help us produce estimates of history of the state variables

conditional on the information set implied by all of the observations available. The history of

the state variables conditional on all of the observations is referred to as the smoothed

estimates of the state variables.

The setup for the Kalman filter in Hamilton’s “Time Series Analysis” assumes that we the

state equation has as many shocks as state variables. The smoothing recursion derived in

Hamilton runs into a statistical singularity that can be avoided. Durbin and Koopman show

us how to deal with generalizing the the smoothing recursion to cases state equations that

have fewer shocks than state variables. Below is a cheat sheet that matches relates the

notation used in Hamilton and in Durbin-Koopman.

Kalman filter setup using the notation in Durbin-Koopman

αt+1 = Tαt + Rηt

yt = Zαt + εt

with εt = N (0, H), η = N (0, Q) .



Kalman setup using the notation in Hamilton

ξt+1 = Fξt + vt+1

yt = A′xt + H ′ξt + wt

with wt = N (0, R), vt = (0, Q).

Durbin- Koopman Hamilton

T F

RQR′ Q

Z H ′

H R

αt+1 ξt+1

at+1 ξ̂t+1|t

α̂t ξ̂t|T

Kt Kt

Pt Pt|t−1

Ft H ′Pt|t−1H + R

We want to translate

rt−1 = Z ′F−1

t vt + L′
trt

α̂t = at + Ptrt−1

where

Ft = ZPtZ
′ + H

Lt = T − KtZ

Kt = TPtZ
′F−1

t

Pt+1 = TPtL
′
t + RQR′

vt = yt − Zat

at+1 = Tat + Ktvt



Start from from Durbin-Koopman’s

rt−1 = Z ′F−1

t vt + L′
trt.

Using Hamilton’s notation, this translates to:

rt−1 = H
(

H ′Pt|t−1H + R
)−1 (

yt − H ′ξ̂t|t−1

)

+ (F ′
− HK ′

t) rt

and Durbin-Koopman’s updating equation

α̂t = at + Ptrt−1

can be re-written in Hamilton’s notation as

ξ̂t|T = ξ̂t|t−1 + Pt|t−1rt−1

How to get rt? Start from the end. By construction rT is equatl to 0.

rT−1 = H
(

H ′PT |T−1H + R
)−1 (

yT − H ′ξ̂T |T−1

)

+ (F ′
− HK ′

T ) rT

Substituting the above into

ξ̂T |T = ξ̂T |T−1 + PT |T−1rT−1

results in:

ξ̂T |T = ξ̂T |T−1 + PT |T−1H
(

H ′PT |T−1H + R
)−1 (

yT − H ′ξ̂T |T−1

)

but we know ξ̂T |T−1 and PT |T−1 from the filtering recursions. So now we can iterate backwards

to get ξ̂T−1|T , ξ̂T−2|T , and so on.

From Durbin-Koopman, we also learn how to obtain the smoothed estimates for the shocks in

the state equation (in their notation):

η̂t = QtR
′
trt.


