
Bayesian Estimation of a DSGE model

Why bother?

Practical problem: as the number of parameters to be

estimated increases the likelihood might flatten out.

Bayesian approach brings in prior information to the problem,

which can give us local identification where we had none before.



How does it work

Bayes’ rule:

Let A and B be two events defined on a sample space, then

P(A/B) =
P(B/A)P(A)

P(B)

Now let X and Y be random variables

Px/y(X/Y ) =
Py/x(Y/X)Px(X)

Py(Y )

If Y is observed data and X is a collection of parameters, the

Py/x(Y/X) is the likelihood. Px(X) is the prior and Px/y(X/Y )

is the posterior.



Analytical Integration

If we could compute

∫
x

Py/x(Y/X)Px(X)dx

Then we could also construct Py(Y ), at that point we would

know Px/y(X/Y ).

This problem can be solved analytically for “judicious” choices

of priors and models.

Analytical procedure generally not available for the estimation

of DSGE models, since the parameters of interest are

embedded in the reduced form of the model.



Numerical Integration

Can we save the day with numerical methods? We most

certainly can.

The most widely used numerical method when estimating

DSGE models is the Metropolis-Hastings algorithm.

It is one implementation of importance sampling:

- sample at random, but stick around a little longer where the

posterior has a lot of mass

- still allow for escapes from areas of high mass



The MH Algorithm

Choose θ0

Draw θ∗ from q(./θi)

Calculate ratio r =
P (Y/θ∗)P (θ∗)
P (Y/θi)P (θi)

If r ≥ 1 then θi+1 = θ∗ otherwise

θi+1 = θ∗with probability r

θi+1 = θiwith probability 1-r

Draws from q constructed as above will converge to draws from

the posterior if some regularity conditions are met. These

conditions include that q(./θ) needs to cover the posterior

distribution.


