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1 A General Method for the Linear Approximation to

the Solution of DSGE Models

The algebraic manipulations we performed onto the system of necessary conditions for an

equilibrium ensured that the left-hand side matrix ψ would be invertible. In fact, if we had

not substituted all the identities out of the system, ψ would not have been invertible. Ensuring

the invertibility of ψ is too laborious a task in all but the simplest models we are interested in

solving. Fortunately, we can deploy some more matrix algebra to help us.

To fix ideas, let’s work with a very simple example of a setup in which ψ is not going to

be invertible. Consider again the basic RBC model described earlier, but this time, rather than

using the resource constraint yt = ct + it to substitute out it from the capital accumulation

equation kt+1 = (1 − δ)kt + it, ignore this simplification. Upon linearization, the necessary

conditions for an equilibrium in our model can then be written as:
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Proceeding analogously to our earlier case, rewrite equations (1) to (4) in matrix form. Howver,

departing slightly from the earlier method, this time, if we are particular about the order in



which we arrange equations and variables, it will have a big payoff later. The reasons, will

become apparent in a little while.

We want to order variables and equations according to these rules:

1. Predetermined variables (e.g., values for shocks, capital stocks) come first, non predeter-

mined variables (e.g., consumption) second.

2. Inter-temporal equations (e.g. law of motion for capital, shock processes) are placed

above, intratemporal equations below.

3. The inter-temporal equations that have expectational errors, such as the Euler equation

for consumption, are placed last among the set of intertemporal equations.

One ordering of the necessary conditions for an equilibrium for the model under study

that satisfies the rules above is: (4), (2), (1), (3). One ordering for the variables in the system

that satisfies the rules above is ẑs, k̂s, ĉs, îs.

Adopting the ordering above for equations and variables, we can write the system of

necessary conditions for an equilibrium as:

ψx̂t+1 = φx̂t + f̂t+1,

where
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Inspecting ψ, the last row of zeros (or the last column) make it singular.

Fortunately, we can still proceed much in the same way as when ψ is invertible, but we

just need to be a little more patient with the algebra. For starters, use the generalized complex

Schur decomposition on the matrices φ and ψ. If you have never used this decomposition before,

don’t panic, there is nothing too transcendental about it.

It is still a cause of great happiness to me that Matlab can yield the generalized Schur

decomposition with the command qz. This decomposition can be applied to any pair of square

matrices ψ and φ. It yields matrices Q,Z, ψ△, φ△ that have some interesting properties:

QψZ = φ△, QHψ△Z
H ,

QφZ = ψ△, QHφ△Z
H ,

QHQ = I, ZHZ = I,

where, “H” denotes the transpose of the complex conjugate, and I the identity matrix. One

of the beautiful properties of this decomposition is that ψ△ and φ△ are (upper) triangular

matrices. Furthermore, the generalized eigenvalues of ψ△ and φ△ are the same as those of the

original matrices ψ and φ. In fact, the generalized eigenvalues can simply be found by dividing

one by one the diagonal entries of ψ△ by the diagonal entries of φ△.

The Schur decomposition is not unique. We want to reorder it so that the stable general-

ized eigenvalues are associated with the upper rows of ψ△ and φ△, and the unstable generalized

eigenvalues with the lower rows. This can be done with the Matlab command ordqz.

Let’s go back to our system of conditions for an equilibrium in matrix form ψx̂t+1 =

φx̂t + f̂t+1. We can now rewrite it as:
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H x̂t + f̂t+1. (5)



Premultiplying through by Q,

ψ△Z
H x̂t+1 = φ△Z

H x̂t +Qf̂t+1. (6)

As you might predict, this invites a natural change in variables. Let ŷs = ZH x̂s. Then,

ψ△ŷt+1 = φ△ŷt +Qf̂t+1. (7)

Next let’s partition ŷs into two parts ŷs =
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as the number of stable generalized eigenvalues of ψ and φ. The partition ŷUs has nU rows,

as many as the number of unstable generalized eigenvalues. Applying the same partitioning to

equation (7), one obtains:
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Thus, for example, ψ△11 has dimensions nS × nS.

Since all the entries of ψ△21 and of φ△21 are zeros, the non-explosiveness condition implies

that ŷUs = 0 for all s. To derive this result, notice that φ△22V = ψ△22V D, where V collects the

generalized eigenvectors of φ△22 and ψ△22, and D is a diagonal matrix whose non-zero entries

are the generalized eigenvalues. By construction, the generalized eigenvalues of ψ△22 and φ△22

are unstable. So, we can construct a similar argument to the one we used in the previous

section, in the case of ψ invertible, to show that the non-explosiveness condition does imply

ŷUs = 0 for all s.

Note that the change in variables we used above also implies that x̂s = Zŷs. Partititioning

the system leads to:
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But, since ŷUs = 0 ∀s, we have that x̂St = Z11ŷSt, and also that x̂Ut = Z21ŷSt. Combining the

previous two results and bringing the equation forward by one period:

x̂Ut+1 = Z21Z
−1
11 x̂St+1 (9)



Notice that, by construction, if the Blanchard-Kahn conditions are satisfied, x̂Ut only holds

jump variables, and x̂St only holds non-jump predetermined variables. So, equation (9) gives

us a way do deduce all the jump variables from the predetermined variables, without any

additional recourse to the innovations to the shock processes other than their effects already

embedded in x̂St+1.

Finally, we need to solve for x̂St+1. From equation (8), using the result from the non-

explosiveness condition that ŷUs = 0 ∀ s, we have that
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But the non-explosiveness condition also implies
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from which one can see that

f̂Ut+1 = −Q−1
22 Q21f̂St+1. (11)

Notice that, by construction, f̂St+1 will hold innovations to shocks and no expectational errors.

Conversely, f̂Ut+1 will hold expectational errors, and no innovations. Accordingly, equation (11)

gives us a way to retrieve expectational errors from fundamental innovations. The Blanchard-

Kahn conditions, given our ordering rules, will ensure invertibility of Q22.

Substituting equation (11) into equation (10), and remembering that ŷSt = Z−1
11 x̂St, one

obtains
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Premultiplying by Z11ψ
−1
△11 and collecting terms, then we can rewrite the equation above as
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Equations (9) and (12) give us a way to solve for all variables of interest. In fact, with

just one more set of painless substitutions, they can be rewritten in a more visually appealing

way:

x̂St+1 = Ax̂St +Bf̂St+1 (13)

x̂Ut+1 = Cx̂St+1 (14)

A = Z11ψ
−1
△11φ△11(Z11)

−1 (15)

B = Z11ψ
−1
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(

Q11 −Q12Q
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(16)

C = Z21(Z11)
−1, (17)

which completes the “A,B,C” of model solving.


