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1 Some Basic Time-Series Concepts

You can find many good introductions to time series. See, for example, chapters 1 to 3 and 5

of Hamilton’s ”Time Series Analysis.”

1.1 Recursive Substitution

Consider the process

yt = ρyt−1 + ǫt.

The equation above summarizes the evolution of yt through time using a first-order difference

equation. The order is given by the fact that only the first lag of y appears in the equation.

Notice also that the equation is linear. For most of the course we’ll be concerned with linear

processes, only touching on non-linear stochastic processes towards the end of the course. Notice

that the relationship in equation (1.1) implies

y1 = ρy0 + ǫ1

y2 = ρy1 + ǫ2

y3 = ρy2 + ǫ3



.

.

.

yT = ρyT−1 + ǫT

Knowing the starting value of y, y0, we could back out the path ǫ through time. Notice also

that, by repeated substitution, we can express yt as:

yt = ρty0 + ρt−1ǫ1 + ρt−2ǫ2 + ... + ρǫt−1 + ǫt.

From the equation above, we can also notice that if ǫ is uncorrelated through time, the partial

effect of a change in ǫ1 on yt is given by:

∂yt

∂ǫ1

= ρt−1,

which also has the interpretation as the dynamic multiplier on yt of the innovation ǫ1. Notice

that tracing the dynamic multipliers for an innovation through time corresponds to comput-

ing an impulse response to the innovation. Thus think of an impulse response function as a

collection of dynamic multipliers:

IRF (ǫ1) =

{

∂y1

∂ǫ1

,
∂y2

∂ǫ1

,
∂y2

∂ǫ1

, ...

}

Notice that if |ρ| < 1 then limt→∞

∂yt

∂ǫ1
= 0. In other words, the effect of any one innovation is

temporary if ρ lies within the unit circle. By contrast, if ρ lies on or outside the unit circle, an

innovation has non-zero effects that extend into the infinite future.

1.2 Higher order difference equations

The method of repeated substitutions extends readily to higher-order processes. Consider, for

example

yt = ρ1yt−1 + ρ2yt−2 + ρ3yt−3 + ǫt.



In this case, rewrite the equation in companion form:

ξt = ρξt−1 +
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Again, knowing the starting values for y, say y
−1 and y0, allows us to back out a series for ǫ

from date 1 till the end of the observed sample. Notice that by repeated substitution,

ξt = ρtξ0 + ρt−1
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From the equation above, one can see that

∂yt

∂ǫ1

= ρt−1

1,1 ,

where ρt−1
1,1 denotes the 1, 1 element of the matrix ρ taken to the t − 1 power. In this case,

investigating whether or not limt→∞

∂yt

∂ǫ1
is finite, will depend on the eigenvalues of the matrix

ρ. Let’s consider this question a little more thoroughly.

Remember that if a square matrix ρ of dimension n has n distinct eigenvalues, the Jordan

canonical decomposition of ρ takes the form

ρ = V DV −1, (4)

where D is a matrix with the eigenvalues of ρ along its diagonal and zeros elsewhere. V is a

matrix whose columns are the eigenvectors of ρ. From equation (4), one can see that:

ρt−1 = V Dt−1V −1. (5)



But since D is diagonal, the t − 1 power of D obtains by simply raising to the power of t − 1

each of its diagonal element individually. Thus, one can see that if all the eigenvalues of ρ are

within the unit circle, limt→∞

∂yt

∂ǫ1
= 0.

For an extension of the argument above to the case in which ρ does not have n distinct

eigenvalues see Chapter 1 of Hamilton’s “Time Series Analysis.”

2 Unconditional Mean and Variance of AR Processes

Extending the argument used in the solution of AR processes by repeated substitution, one can

rewrite an AR process as a function of innovations for the infinite past, call this the MA(∞)

representation. We can use this representation to find the mean and autocovariances as long

as the roots of the process lie within the unit circle. To fix ideas we shall work with an AR(1)

process, but the arguments presented readily extend to higher-order processes.

Consider again

yt = ρyt−1 + ǫt

where ǫt is process independently and identically distributed through time with mean zero and

variance σ2. By repeated substitution:

yt = ǫt + ρǫt−1 + ρ2ǫt−2 + ...

Taking expectations:

E[yt] = E[ǫt + ρǫt−1 + ρ2ǫt−2 + ...].

But given |ρ| < 1 the expression on the RHS is absolutely summable and distributing the

expectation operator to each term

E[yt] = E[ǫt] + ρE[ǫt−1] + ρ2E[ǫt−2] + ... = 0.

One can also use the MA(∞) representation to facilitate computing the unconditional

variance of the process. Thus,

V AR(yt) = V AR(ǫt + ρǫt−1 + ρ2ǫt−2 + ...)



From the fact that the innovations are independently distributed through time

V AR(yt) = V AR(ǫt) + V AR(ρǫt−1) + V AR(ρ2ǫt−2) + ...

With a little manipulation, as long as |ρ| < 1,

V AR(yt) = σ2 + ρ2σ2 + ρ4σ2 + ... =
σ2

1 − ρ2

2.1 Autocovariances, autocorrelations, and the correlogram

Autocovariances are covariances of a process with its own lag. Trivially, the autocovariance at

lag zero is the variance. The autocovariance for lag 1 is COV (yt, yt−1), and so on. The MA(∞)

representation of an AR process can also come in handy in computing the autocovariances.

Again, taking as an example and AR(1) process:

yt = ǫt + ρǫt−1 + ρ2ǫt−2 + ρ3ǫt−3... (6)

yt−1 = ǫt−1 + ρ ǫt−2 + ρ2ǫt−3... (7)

Then autocovariance at lag 1 can be found as

COV (yt, yt−1) = E[ǫt + ρǫt−1 + ρ2ǫt−2 + ...] · [ǫt−1 + ρ2ǫt−2 + ...]

Collecting terms, as long as |ρ| < 1,

COV (yt, yt−1) = ρσ2 + ρ3σ2 + ρ5σ2 + ... = ρ
σ2

1 − ρ2
.

By extension,

COV (yt, yt−j) = ρj σ2

1 − ρ2
.

Normalizing the covariance by the variance produces the autocorrelation. Thus, for an AR(1)

process the autocorrelation at lag j is given by

COV (yt, yt−j)

V AR(yt)
=

ρj σ2

1−ρ2

σ2

1−ρ2

= ρj .

A plot of the autocorrelation function with the value of the autocorrelation along the ordinates

and the lag on the abscissae produces the correlogram, as demonstrated by the Matlab program



plot ar1.m in the zipped file corresponding to this handout. The pattern of exponential decay

of the correlogram is a feature that extends to autoregressive processes of higher orders and

cannot be used to distinguish visually among autocorrelation processes of different order.

2.2 Some definitions

• Weak Stationarity. If the mean and the autocovariances at all lags do not depend on

the date t, then a time series process is said to be (weakly) stationary.

• Strong stationarity. If the joint distribution of X(t1), ..., X(tk) is the same as the joint

distribution of X(t1+τ ), ..., X(tk+τ) for all k and τ , then the time series process governing

X is said to be strictly stationary.

• Gaussianity. If the joint distribution X(t1), ..., X(tk) is jointly normal for any k, then the

process is said to be Gaussian. It follows that a covariance-stationary Gaussian process

is also strictly stationary.

• White Noise. Consider the sequence {ǫt}∞t=−∞
. If all elements have mean 0 and variance

σ and if E(ǫt, ǫt+τ ) = 0 for all τ except τ = 0, then the process governing the ǫ terms is

said to be white noise.

3 Estimating autoregressive processes

A typical assumption of the multiple regression model is that the regressors do not covary with

the error term of the regression at any lag of time. That assumption is clearly violated in the

case of an autoregressive process. As a consequence, the OLS estimator is not the best linear

unbiased estimator (it will be biased, in fact) and there is no particular reason for sticking with

it. What other methods are available then for the estimation of an autoregressive process?

Let’s consider two alternatives: conditional and unconditional maximum likelihood estimation.



3.1 Maximum likelihood estimation

To fix ideas we shall consider how to set up the likelihood of an AR(1) process, but the procedure

easily extends to higher-order processes. Consider, again, the process

yt = ρyt−1 + ǫt.,

where ǫt is NID with variance σ2. Suppose that there are only two observations, then their

joint density function can be written as

P (y2, y1) = P (y2|y1)P (y1) (8)

Similarly for 3 observations

P (y3, y2, y1) = P (y3|y2, y1)P (y2, y1) (9)

Substituting (8) into (10)

P (y3, y2, y1) = P (y3|y2, y1)P (y2|y1)P (y1) (10)

Extending this reasoning to T observations, you can see that the likelihood can be written as:

L(YT , ρ, σ2) = P (y1)
T
∏

t=2

P (yt|Yt−1) (11)

where Yt represents the vector of observations from 1 through yt−1. Remember that if ǫ is

distributed as Normal with mean µ and variance σ2, then the probability density function for

epsilon is given by:

PDF (ǫ) =
1√

2πσ2
exp

(

−(ǫ − µ)2

2σ2

)

In turn, for the AR(1) process in equation (3.1), the log-likelihood function takes the form:

log L(YT , ρ, σ2) = −T − 1

2
log(2π) − T − 1

2
log σ2 −

T
∑

t−2

(yt − ρyt−1)
2

2σ2
+ log P (y1) (12)

While the evaluation of (??) seems straight-forward, the term log P (y1) deserves some further

discussion. If this term can be thought of as being fixed in repeated draws of the observed

sample, then it simply drops out of the likelihood:

log L(YT , ρ, σ2) = −T − 1

2
log(2π) − T − 1

2
log σ2 −

T
∑

t−2

(yt − ρyt−1)
2

2σ2
(13)



Maximizing the remaining terms yields the conditional maximum likelihood estimates for the

AR(1) process. Conveniently, there is no need to numerically optimize the function above, as

the maximum likelihood estimate can also be thought of as the estimate produced by minimizing

the residual sum of square, as performed by the OLS estimator.

An alternative way of proceeding for stationary series (in this case, when |ρ| < 1) is to

think that y1 was drawn for the unconditional distribution for y. As seen above, y1 then has

mean 0 and variance σ2

1−ρ2 . Thus, equation (??) becomes

log L(YT , ρ, σ2) = −T

2
log(2π) − T

2
log σ2 +

1

2
log(1 − ρ2) −

T
∑

t−2

(yt − ρyt−1)
2

2σ2
− y2

1

σ2

1−ρ2

(14)

which is referred to as the unconditional likelihood. Unfortunately, in this case, numerical

optimization of the likelihood cannot be avoided.

4 Bootstrap Standard Errors and Confidence Intervals

So far, we have not considered the question of how to retrieve the standard errors for the

parameter estimates of the AR model. The inversion of the information matrix is still a valid way

of retrieving the variance covariance matrix for the estimates and has asymptotic justification.

An alternative is the bootstrap method, that in practice seems to have better properties in

small samples, even though its justification is asymptotic in nature.

Here is a cookbook recipe for the application of the bootstrap method to an AR(1)

process:

yt = ρyt−1 + ǫt

1. Estimate ρ by ρ̂

2. Form the residuals ǫ̂t = yt − ρ̂yt−1

3. Sample from the residuals with replacement, and form new data yi,t

4. With the new data, form the estimate ρ̂i



5. Repeat the replication and re-estimation of ρ an appropriately large number of times

6. The variance of ρ̂i can be taken to be the estimate of the variance of ρ̂.

The procedure above also yields a way to compute confidence intervals for the parameter

estimates. Inverting the normal distribution, a 90% confidence interval can be constructed as

ρ̂ − 1.6 ∗
√

V AR(ρ̂i) < ρ < ρ̂ + 1.6 ∗
√

V AR(ρ̂i).

5 Moving Average Processes

Consider the process

yt = µ + ǫt + ρǫt−1, (15)

where µ and ρ could be any constants and ǫ is governed by a white noise process. The process

for y is called a moving average process of first-order, or MA(1).

5.1 Mean, Variance, and Covariances

The expectation of y is given by:

E(yt) = µ + E(ǫt) + ρE(ǫt−1).

Which leads to:

E(yt) = µ.

The unconditional variance of y is given by:

V AR(yt) = E(yt − µ)2 = E(ǫt + ρǫt−1)
2.

But is ǫ is governed by a white noise process:

V AR(yt) = 1 + ρ2σ2.

The covariance at lag one is given by:

E[(yt − µ)(yt−1 − µ)] = E[(ǫt + ρǫt−1)(ǫt−1 + ρǫt−2)] = ρσ2

For the MA(1) process, the covariances at all lags higher than 1 are zero.



5.2 The nth order moving average process

Consider the process

yt = µ + ǫt +
n
∑

i=1

ρiǫt−i, (16)

where ǫ is governed by a white noise process. The process for y is MA(n). The variance of the

process is given by:

V AR(yt) = (1 +
n
∑

i=1

ρ2

i )σ
2.

One can easily see that the covariance at lag j > 0, butj <= n, takes the form:

COV (yt, yt−j) = (ρj + ρj+1ρ1 + ρj+2ρ2 + ... + ρnρn−1)σ
2.

For all lags greater than n, the covariance is zero. To give a concrete example, for an MA(2)

process, the formulae above imply:

V AR(yt) = (1 + ρ2

1 + ρ2

2)σ
2

COV (yt, yt−1) = (ρ1 + ρ2ρ1)σ
2

COV (yt, yt−2) = ρ2σ
2

COV (yt, yt−3) = 0.

Notice that from the formulas above, we can also infer that there are no restrictions on

the parameters governing an MA process to ensure that the process be covariance stationary.


