
Handout 8

1 VARs

Let yt represent an (n× 1) vector containing the observations for n distinct variables at time t.

Consider the process:

yt = c+ φ1yt−1 + φ2yt−2 + ...+ φnyt−n + ǫt,

where ǫt is identically and independently distributed with mean 0̄ and variance Ω, φ1, φ2, ...,

φn are n× n matrices of coefficients and c is an n× 1 vector of coefficients.

Why is it interesting to consider VARs? Could we not simply stick with univariate

processes? Notice that if the true data-generating process for the vector yt is indeed a VAR, a

univariate representation for any of the individual variables, if it exists, would take an ARMA

form of possibly infinite order. The direct estimation of the VAR form might then involve a

more parsimonious specification even if we are really interested in only one of the entries of the

vector yt.



1.1 Basic properties

Stationarity. Following the same reasoning as for univariate processes, rewrite the VAR

process above in companion form:
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If all of the eigenvalues of Φ are within the unit circle, the VAR process will be covariance

stationary.

Unconditional Mean

If the process is covariance stationary, than we have:

E[yt] = c+ φ1E[yt] + φ2E[yt] + ... + φnE[yt].

Denoting the unconditional mean by µ

µ = (I − φ1 − φ2 − ...− φn)
−1 c

1.2 MA representation

If the VAR process is covariance stationary, then it also has a an MA(∞) representation. To

fix notation, let this representation take the form:

yt = µ+ ǫt + ψ1ǫt−1 + ψ2ǫt−2 + ...



where µ is the mean of the process and the remaining matrices are square and conformable

with the innovation vectors. These matrices of coefficients can be found easily by proceeding

numerically as follows:

1. Momentarily discard the c vector and pretend the mean of the process is zero.

2. For each of n innovations of the process at time 0 consider forming the (unidentified)

responses of y starting form the pretend mean to unit increases in the innovations in

period 0 only. Collect as the responses of y for as many periods as the desired coefficients

ψ1, ψ2 , ... , ψn above.

3. Collect the responses of y through time in history matricesHi, whereHi = [y0,i, y1,i, y2,i, ..., yn,i]

where yt,i denotes the response of y to the ith at time t.

4. Form ψj by collecting the relevant columns of the history matrices ψj = [yj,1, ..., yj,n].

1.3 Estimation

Just as we have seen for an AR process, if the ǫt term is normally distributed, and independent

through time, OLS estimates equation by equation will be equivalent to maximum likelihood

estimates for the whole system, conditioning on the first n observations being non-stochastic.

This implies that for an unrestricted VAR, we have license to ignore the information contained

in the correlation in the residual across different equations.

The essential ingredient needed for this result to go through is that the lag structure of

the VAR be the same in each equation. If instead, one is interested in estimating a system with

parametric restrictions on the coefficients, one can obtain more efficient estimates by considering

the correlation of the residuals across equations. Instead of OLS equation by equation, in that

case, one can deploy a SUR estimator or form the conditional maximum likelihood and optimize

it numerically.

If you cannot stomach the assumption that the first n observations be non-stochastic,

then you can proceed numerically using unconditionally maximum likelihood.



1.4 Identification

Realizing that the VAR process for yt is simply a dynamic system of equations, one can see

that it can be thought as the reduced-form of the structural system:

φ̃0yt = c̃+ φ̃1yt−1 + φ̃2yt−2 + ... + φ̃nyt−n + ǫ̃t,

where ǫ̃t is IID with variance Σ, which is related to Ω above by Ω = (φ−1
0 )Σ(φ−1

0 )′. Furthermore

φj = φ̃j

φ̃0

for j ∈ {1, ..., n} and c = c̃

φ̃0

.

It is also apparent from the equation above, that unless particularly restrictive conditions

hold, the estimates of the innovations for the reduced form of the system will co-mingle the

structural innovations and will have no easy economic interpretation.

It is apparent from the structural form of the VAR that there are N2 more structural

parameters than reduced form parameters. For identification of the structural parameters

through the reduced form estimates, there needs to be a one-to-one mapping between the

coefficients of the two forms. Normalizing the diagonal elements of ˆomega to be 1, implies

that that for identification, we need to place at least N2 − N restrictions on the structural

parameters of the model. This is where economic theory is supposed to come to the rescue.

While a typical presentation of the methods relating to the estimation and identification

of dynamic systems focuses only parametric restrictions on φ̃0 to φ̃n, the literature on identified

vector auto-regressions typically relies on restrictions on φ̃0 and Σ.

2 A Recursive Identification Scheme

As a first example of identifying the innovations of a VAR, consider the recursive identification

scheme. The assumptions underlying this scheme are that φ̃0 is lower triangular and that

Σ is diagonal. What is the meaning of these restrictions? With Σ diagonal, the structural

innovations are taken to be uncorrelated with each other. The fact that the matrix φ̃0 is

taken to be lower triangular implies that only the first shock can affect the first variable in

the VAR contemporaneously; only the first and second shocks can affect the second variable

contemporaneously; and so on.



Notice that the identification scheme described above involves N2−N restrictions. N2
−N
2

restrictions come from the assumption of a triangular φ̃0, and an additional N2
−N
2

come from a

diagonal Σ (taking into account that variance covariance matrices are symmetric).

One way to retrieve the structural coefficients would be to estimate them directly by

maximum likelihood, but we can follow a route that is less numerically taxing.

For this consider the Cholesky decomposition. Given a positive definite matrix A the

Cholesky decomposition yields a triangular matrix R such that A = RR′. Remember also that

the inverse of a triangular matrix is itself triangular. These two facts suggest the following

estimation strategy:

1. Estimate the variance covariance matrix of the unidentified residuals by Ω̂, where the i, j

entry of Ω̂ is given by
∑T

k=1+n

ei,kej,k

T
where n is the order of the VAR, T is the number

of observations and ei, k,ej, k are the OLS residuals from the ith and jth equation of the

VAR for period k, respectively.

2. By construction, Ω̂ is positive definite, so we can entertain computing its Cholesky de-

composition to construct Ω̂ = RR′

3. Extract the diagonal elements of R, place them in the diagonal matrix ˆSigma

4. Form a new matrix Q by copying the non-diagonal elements of R. Place elements equal

to 1 along the diagonal of Q (Notice that, by construction, Ω̂ = QΣ̂Q′.)

5. Form
ˆ̃
φ0 the estimate of φ̃0 by inverting the matrix Q.

3 Variance decompositions

Because the identified innovations produced by the recursive identification scheme are uncorre-

lated with each other, we can easily decompose the variance of the in-sample predicted values

into the individual contributions of the various identified innovations.



For variable i in the VAR, the contributions to its predicted variance by the k innovation

can be sizes as var(ŷi|k)/var(ŷi). where ŷi|k, is the in-sample predicted series for ŷi conditional

on only turning on the k innovations only.


