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1 Solving for the identification matrix directly

While the Cholesky decomposition is a convenient way to impose a recursive identification

scheme, we might want to impose a more complex set of restrictions that do not conform with

a recursive scheme. In those cases we are left with inspecting the non-linear system of equations

that links the structural- and the reduced-form representation of a VAR.

To fix ideas, let’s stick with a very simple VAR(1) process for two variables and let’s use,

again, a recursive scheme, but this time, let’s not take advantage of the Cholesky decomposition.

Let the reduced-form representation for yt take the form:

yt =







b11 b12

b21 b22





 yt−1 + ǫt

and let ǫt be white noise with variance Ω. Also, let the structural-form representation of yt take

the form:






ã11 ã12

ã21 ã22





 yt =







b̃11 b̃12

b̃21 b̃22





 yt−1 + ǫ̃t,

where ˜epsilont is white noise with diagonal variance Σ.

Let the short run restriction be that a12 = 0. From usual normalizations, we have that

a11 = 1 and a22 = 1. Thus idenfication entails finding values of the parameters a21 and for Σ1

and Σ2, the diagonal entries of Σ.

From the relationship between the structural form and the reduced form, we have that:

ã−1Σã−1′ = Ω.



Notice that our restrictions imply:

ã =







1 0

a21 1





 .

But then the determinant of a equals 1 and we can write:






1 0

−a21 1













Σ1 0

0 Σ2













1 −a21

0 1





 = Ω.

Multiplying through yields:






Σ1 0

−a21Σ1 Σ2













1 −a21

0 1





 = Ω.

And finally:






Σ1 −a21Σ1

−a21Σ1 Σ2





 = Ω.

which yields three independent equations in the unknowns a21, Σ1, Σ2, and the reduced-form

coefficients in Ω.

2 Long-run restrictions

In this section we shall consider how to adapt the recursive scheme to achieve identification

based on long-run restrictions.

To fix ideas, let’s go back to a univariate process. Let’s start from a simple AR(1) process:

yt = ρyt + ǫt

where ǫt is white noise. What is the long-run cumulative effect of ǫt? That would be given by:

lim
j→∞

j
∑

k=0

∂yt+k

∂ǫt

ǫt =
j

∑

k=0

ρkǫt =
1

1 − ρ
ǫt.

Notice that the formula for the long-run effect of an innovation takes a very similar form in the

case of an AR(n) process:

lim
j→∞

j
∑

k=0

∂yt+k

∂ǫt

ǫt =
1

1 −
∑n

i ρi

ǫt,



and can be extended to a VAR(n) process as:

lim
j→∞

j
∑

k=0

∂yt+k

∂ǫt

= (I −
n

∑

i

ρi)
−1ǫt.

From this formula, we see that the variance for the long-run cumulative effect of an innovation

for a VAR(n) process is:

V ar( lim
j→∞

j
∑

k=0

∂yt+k

∂ǫt

ǫt) = (I −
n

∑

i

ρi)
−1Ω(I −

p
∑

i

ρi)
−1

′

.

To fix notation, consider again the reduced-form VAR(n) representation of a process yt,

yt = c + ρ1yt−1 + ρ2yt−2 + ... + ρnyt−n + ǫt, (1)

where epsilont has variance Ω. Again, let the structural representation of the process yt take

the form

ρ̃0yt = c̃ + ρ̃1yt−1 + ρ̃2yt−2 + ... + ρ̃nyt−n + ǫ̃t, (2)

where ǫ̃t is IID with variance Σ, which is related to Ω above by Ω = (φ̃0

−1

)Σ(φ̃0

−1

)′. Furthermore

φj =
φ̃j

φ̃0

for j ∈ {1, ..., n} and c = c̃

φ̃0

. We could identify φ0 using restrictions on the long-run

effects of shocks. Akin to the recursive short-run identification scheme, let only the first shock

have a nonzero long-run cumulative effect on the first variable; let only the first and second

shock have a nonzero long-run cumulative effect on the second variable; and so on.

Now, consider what the structural representation implies for the long-run cumulative

effect of a shock and its variance:

lim
j→∞

j
∑

k=0

∂yt+k

∂ǫ̃t

ǫ̃t = (ρ̃0 −
n

∑

i

ρ̃i)
−1ǫ̃t

V ar( lim
j→∞

j
∑

k=0

∂yt+k

∂ǫ̃t

ǫ̃t) = (ρ̃0 −
n

∑

i

ρ̃i)
−1Σ(ρ̃0 −

p
∑

i

ρ̃i)
−1′ .

Collecting the term ρ̃0, one obtains:

V ar( lim
j→∞

j
∑

k=0

∂yt+k

∂ǫ̃t

ǫ̃t) = (ρ̃0(I −
n

∑

i

ρ̃0
−1ρ̃i))

−1Σ(ρ̃0(I −
n

∑

i

ρ̃0
−1ρ̃i))

−1′.



But notice that by simplifying further:

V ar( lim
j→∞

j
∑

k=0

∂yt+k

∂ǫ̃t

ǫ̃t) = (I −
n

∑

i

ρ̃0
−1ρ̃i)

−1ρ̃0
−1Σρ̃0

−1′(I −
n

∑

i

ρ̃0
−1ρ̃i)

−1′ .

But this suggests that we can estimate V ar(limj→∞

∑j
k=0

∂yt+k

∂ǫ̃t
ǫ̃t) as

ˆ
V ar( lim

j→∞

j
∑

k=0

∂yt+k

∂ǫ̃t

ǫ̃t) = (I −
n

∑

i

ρ̂i)
−1Ω̂(I −

n
∑

i

ρ̂i)
−1

′

.

Notice that the long-run restriction scheme described above, together with the normalization

that Σ is diagonal, implies that (ρ̃0−
∑n

i ρ̃i)
−1 should be triangular and equal to R, the Cholesky

factor of V ar(limj→∞

∑j
k=0

∂yt+k

∂ǫ̃t
). As a result, we can estimate ρ̃0

−1 by considering the following

set of restrictions:

( ˆ̃ρ0 −
n

∑

i

ˆ̃ρi)
−1 = R

which leads to

( ˆ̃ρ0 − ˆ̃ρ0

n
∑

i

ρ̂i)
−1 = R.

Collecting terms:

(I −
n

∑

i

ρ̂i)
−1 ˆ̃ρ0

−1

= R,

and premultiplying by (I −
∑n

i ρ̂i)
−1

ˆ̃ρ0

−1

= (I −
n

∑

i

ρ̂i)R.

2.1 Using Instrumental Variables to Implement Long-Run Restric-

tions

See Shapiro and Watson “Sources of Business Cycle Fluctuations”, NBER Macroeconomic

Annual, 1988.

To fix ideas consider a VAR(1) process with only two variables.






1 ã12

ã21 1













y1t

y2t





 =







b̃11 b̃12

b̃21 b̃22













y1t−1

y2t−1





 +







ǫ̃1t

ǫ̃2t





 , (3)



where ǫ̃t is white noise with diagonal variance Σ.

Notice that OLS equation by equation would produce inconsistent estimates because of

endogeneity. We know that y2t in the first equation is correlated with y1t, as can be seen from

the second equation, but then it must also be correlated with ǫ1t. A similar reasoning applies

to the term y1t in the second equation.

Are there convenient instruments that might take care of the endogeneity problem? For-

tunately, yes.

Consider again the long-run cumulative effect of an innovation ǫt.

lim
j→∞

j
∑

k=0

∂yt+k

∂ǫ̃t

ǫ̃t = (a − b)−1ǫ̃t.

The long-run restriction scheme described in the previous section implies that (a−b)−1 is equal

to a lower-triangular matrix c. We then have

c = (a − b)−1,

but this also implies that:

c(a − b) = I.

For our example we have that:






c11 0

c21 c22













1 − b̃11 ã12 − b̃12

ã21 − b̃21 1 − b̃22





 = I

Notice that the 1, 2 entry of the system implies that:

c11(ã12 − b̃12) = 0

As long as c11 is not 0, then it must be that ã12 = b̃12. Notice that exploiting this restriction

we can rewrite the first equation in (3) as:

y1t = b̃11y1t−1 − b̃12(y2t − y2t−1) + ǫ1t.

We can then estimate the equation above using yt−1 and yt−2 as instruments.

Using the IV estimates of the equation above, we can construct the residual ǫ̃1t. This can

then be used as an instrument in the estimation of the second equation of (3).



3 Sign Restrictions

See Jon Faust “On the Robustness of Identified VAR Conclusions about Money”, Carnegie

Rochester Conference Series on Public Policy, 1998.

Going back the identification problem in equations (1) and (2), in the case of the re-

cursive ordering restrictions, we used a Cholesky decomposition for the variance matrix of the

unidentified residuals, Ω, so that Ω = RR′. Normalizing the matrix Σ to have unit variances,

we could then take R as the inverse of φ̃0. However, for some applications it might be hard to

justify any particular ordering scheme. In those cases we might still achieve identification using

restrictions on the identified impulse responses.

Think about augmenting the Cholesky decomposition of the matrix Ω with a matrix Q,

such that QQ′ = I. In that case Ω = RQQ′R′. The new identifying matrix RQ (our candidate

for the inverse of φ̃0) would then give rise to a new set of identified shocks that share the

property that their variance covariance matrix is the same as those of the unidentified shocks.

If we could systematically consider all the Q matrices that have the property that QQ’ = I, then

we could discriminate among possible candidate identifying matrices based on the properties

of the identified impulse response functions.

To fix ideas take a simple bivariate VAR. A candidate for Q is then:

Q =







cos(θ) −sin(θ)

sin(θ) cos(θ)





 (4)

This particular choice for the matrix Q is called a Givens rotation. Varying θ between 0 and

π we could then systematically consider all the matrices such that QQ′ = 1. To obviate the

problem that θ can take a continuum of values, we could make a fine grid.

For each value on the grid, we could calculate a new set of impulse responses and store

them away, only if the responses satisfy particular properties chosen in accordance with eco-

nomic theory. As an example, consider the case of a VAR including petroleum production levels

and petroleum prices. We could require that supply shocks drive the price up and the quantity

down (or vice versa), and that demand shocks drive up (or down) both the quantity and the

price.



In practice, extending this scheme to VARs that encompass more variables runs into the

curse of dimensionality. One of the fixes that is used in practice involves abandoning the idea

that we can systematically consider all Q matrices such that QQ′ = I. Instead, we could draw

candidate Q matrices at random. One way to generate random draws of Q is this:

1. Draw each entry of a square matrix A, conformable with Ω from the Standard Normal

distribution.

2. Take the QR decomposition of the matrix A, which produces matrices Q and R such that

A = QR, where Q is unitary and R is triangular.

The identification scheme involves generating enough random draws of Q to ensure that

we find at least n matrices that satisfy the desired set of properties for the impulse responses.

The programs accompanying this handout implement this kind of identification scheme for a

3-variable VAR.


