
Solution to Problem Set 3

Question 1

In Handout 6, we saw that the conditional likelihood function takes the form:
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Consider the first-order conditions for the maximization of the log-likelihood function:
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Solving the FOCs above for ρ and σ yields their conditional maximum likelihood estimates:
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Next consider the OLS minimization problem:
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The first-order condition for this problem yields:

ρ̂OLS =

∑
ytyt−1∑
y2t−1

.

which coincides with the ML estimator derived above.

Next, consider the variance of the ML estimator for ρ and σ. We know that ML is

efficient and will reach the Cramer-Rao lower bound. Therefore, we can use the inverse of the



information matrix (minus the Hessian evaluated at the maximum of the likeihood) to form the

asymptotic estimates for the variances of interest.

First, to form the Hessian, compute all the second derivatives of the log-likelihood.

∂2

∂ρ2
= −

∑
y2t−1

σ2
, (5)

∂2

∂ρ∂σ
= −

∑
(yt − ρyt−1)yt−1

σ3
, (6)

∂2

∂σ2
=
T − 1

σ2
− 3

∑
(yt − ρyt−1)

σ4
. (7)

To form the information matrix I, evaluate the second derivatives at the maximum of the

likelihood and change their signs:
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In the above we used the FOC with respect to ρ which implies that the cross derivatives are

equal to 0. Next notice that we can simplify the information using the formula for σ̂2 derived

above:
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The Cramer-Rao lower bound is the inverse of the information matrix, or:
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Thus, we can see that:
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But these estimators again coincide with their OLS counterparts.


