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Abstract
Galí’s innovative approach of imposing long-run restrictions on a vector autoregression (VAR)
to identify the effects of a technology shock has become widely utilized. In this paper, we inves-
tigate its reliability through Monte Carlo simulations using calibrated business cycle models.
Overall, Galí’s methodology appears to be fruitful: the impulse responses derived from the
artificial data generally have the same sign and qualitative pattern as the true responses, and
the approach can be informative in discriminating between alternative models. However, our
results reveal some important quantitative shortcomings, including considerable estimation
uncertainty about the impact of technology shocks on macroeconomic variables. More gen-
erally, the conditions under which the methodology performs well appear considerably more
restrictive than implied by the key identifying assumption. This underscores the importance of
using economic models to guide in the implementation of the approach, in interpreting the
results, and in assessing its limitations. (JEL: C32, E32, O33)

1. Introduction

The pioneering work of Blanchard and Quah (1989), King et al. (1991), and
Shapiro and Watson (1988) has stimulated widespread interest in using vector
autoregressions (VARs) that impose long-run restrictions to identify the effects
of shocks. This methodology has proved appealing because it does not require a
fully articulated structural model or numerous model-specific assumptions.

One important recent application of this approach, introduced by Galí (1999),
involves using long-run restrictions to identify the effects of a technology shock.
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The key identifying assumption in this approach is that only technology innova-
tions can affect labor productivity in the long run. As discussed in Galí (1999), this
assumption holds in a broad class of models under relatively weak assumptions
about the form of the production function. Numerous researchers have used this
approach to assess how technology shocks affect macroeconomic variables, and
to quantify the importance of technology shocks in accounting for output and
employment fluctuations.1

While the simplicity of Galí’s methodology has contributed to its broad
appeal, the recent literature has suggested reasons to question whether it is likely
to yield reliable inferences about the effects of technology shocks. One reason is
that it is difficult to estimate precisely the long-run effects of shocks using a short
data sample. Accordingly, as emphasized by Faust and Leeper (1997), structural
VARs (SVARs) that achieve identification through long-run restrictions may per-
form poorly when estimated over the sample periods typically utilized. A second
reason, discussed by Cooley and Dwyer (1998) and Lippi and Reichlin (1993),
is that a short-ordered VAR may provide a poor approximation of the dynamics
of the variables in the VAR if the true data-generating process has a VARMA
representation.

In this paper, we critique the reliability of the Galí methodology by using
Monte Carlo simulations of reasonably calibrated dynamic general equilibrium
models. In particular, we compare the response of macroeconomic variables to a
technology innovation derived from applying Galí’s identifying scheme with the
“true” response implied by our models. We utilize two alternative models of the
business cycle as the data-generating process. The first is a standard real business
cycle (RBC) model with endogenous capital accumulation that includes shocks
to total factor productivity, labor income tax rates, government spending, and
labor supply. The second model incorporates some of the dynamic complications
that have been identified in the recent literature as playing an important role in
accounting for the effects of real and monetary shocks.2 These features include
habit persistence in consumption, costs of changing investment, variable capacity
utilization, and nominal price and wage rigidity. The latter model, which we
call the sticky price/wage model, provides an alternative perspective on how
technology shocks affect the labor market in the short-run, since hours worked
decline sharply after a positive innovation in technology rather than exhibit a
modest rise as in the RBC model.

We generate Monte Carlo simulations from each model using an empirically-
reasonable sample length of 180 quarters. The SVAR that we estimate using the
simulated data includes labor productivity growth, the level of hours worked, the

1. See, for example, Galí (1999), Francis and Ramey (2003), Christiano, Eichenbaum, and
Vigfusson (2003), and Altig et al. (2003).
2. See, for example, Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003).
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ratio of nominal consumption to output, and the ratio of nominal investment to
output.3 One appealing feature of this specification is that a low-ordered VAR (i.e.,
four lags) provides a close approximation to the true data-generating process in the
benchmark parameterizations of each of the models considered.4 This allows us to
interpret the bias in the estimated impulse responses as arising almost exclusively
from the small sample problems emphasized by Faust and Leeper (1997).

Broadly speaking, the shocks derived from application of the Galí method-
ology to the simulated data “look like” true technology shocks in both of the
models we consider. In particular, the mean impulse response functions (IRFs)
of output, investment, consumption, and hours worked derived from the Monte
Carlo simulations uniformly have the same sign and qualitative pattern as the
true responses. Moreover, we find that the probability of inferring a response of
output, consumption, or investment that has the incorrect sign (even for only a
few quarters) is generally low.

However, we find that small-sample bias poses quantitative problems for
this identifying scheme. There is substantial downward bias in the estimated
responses of output, labor productivity, consumption, and investment derived from
the Monte Carlo simulations in each of the models. Given the bias and substantial
spread in the distribution of the impulse responses, we find that the probability
that a researcher would estimate a response for output that lies uniformly more
than 33% away from the true response (for the first four quarters following the
shock) is about 25% in each of the models. A second quantitative shortcoming
is that estimates of the contribution of technology shocks to output fluctuations
at business cycle frequencies are likely to be very imprecise. For example, the
90% confidence intervals for the contribution range between 7% and 90% for
the benchmark RBC model, and between 7% and 80% for the sticky price/wage
model.

We show that the bias in the estimated impulse responses is dependent on
model structure. Within the context of the benchmark models, the bias can be
attributed to two related sources. First, the slow adjustment of capital makes it
hard to gauge the long-run impact of a technology shock on labor productivity,
contributing to downward bias in the estimated impulse responses.5 Second, the
identification procedure has difficulty disentangling technology shocks from other

3. Our inclusion of consumption and investment shares follows Christiano, Eichenbaum, and
Vigfusson (2003).
4. As we show later, our four-variable SVAR with only four lags performs well in recovering the
true responses in the benchmark parameterizations of each of the models if the SVAR is estimated
using population moments from the DGE model rather than sample moments.
5. The fact that slow adjustment of capital creates problems for the identification scheme may seem
surprising given the well-known problem emphasized by Cogley and Nason (1995) that standard real
business cycle models fail to generate enough endogenous persistence. Cogley and Nason (1995)
focus on the inability of these models to generate enough positive autocorrelation in output growth,
but this is still consistent with slow adjustment in the level of labor productivity.



“zwu005050294” — 2005/10/8 — page 1240 — #4

1240 Journal of the European Economic Association

shocks that have highly persistent, even if not permanent, effects on labor produc-
tivity (such as labor supply or tax rate shocks).6 As a result, even in the absence of
shocks that would violate Galí’s long-run identifying assumption, the estimated
technology shock may incorporate a sizeable nontechnology component. Accord-
ingly, the bias in the estimated response of a given variable to a technology shock
depends on the relative magnitude of technology and nontechnology shocks, and
on its response to nontechnology shocks.

Our results also have implications for a principal application of the Galí
methodology, which has involved using estimates derived from SVARs to eval-
uate the plausibility of alternative models of the business cycle.7 Interestingly,
though there is considerable uncertainty about the estimated response of hours
worked, our results suggest that the SVAR approach may provide some basis
for discriminating between models that have sufficiently divergent implications
about how technology shocks affect the labor market. For instance, we find that
the probability of finding an initial decline in hours that persists for two quarters
is 93% in the model with nominal rigidities, but only 26% in the RBC model.
Accordingly, a researcher who found that hours worked declined after a positive
innovation in technology in the data could reasonably interpret this finding as pro-
viding some evidence in favor of the sticky price/wage model. While our results
are encouraging on this dimension, our analysis cautions that appropriate specifi-
cation of the SVAR (i.e., variables included and their transformations) appears to
play a key role in allowing tests to have sufficient power to discriminate between
alternative models.

Finally, we conduct extensive sensitivity analysis that illustrates how the per-
formance of the Galí procedure may be influenced by the selection of variables in
the VAR, the transformations applied, and the nature of the underlying shocks. For
example, we show that a two variable SVAR involving labor productivity growth
and hours worked performs poorly in the RBC model, which is consistent with
recent work by Chari, Kehoe, and McGrattan (2005). However, while the latter
confine attention almost exclusively to that case, a strong comparative advantage
of our approach is that we consider a broader array of variable specifications, and
larger set of models. The fact that the our benchmark four variable SVAR can
work reasonably well in each of the models gives us more scope for optimism.

Thus, we think that Galí’s methodology appears to offer a fruitful approach
to uncovering the effects of technology shocks, and to discriminating between
alternative models. However, our analysis emphasizes that the conditions under
which the Galí methodology performs well appear considerably more restrictive

6. In this respect, our paper shares similarities with an earlier literature emphasizing that the mea-
sured Solow residual is contaminated by aggregate demand disturbances. See, for example, Evans
(1992) and references therein.
7. See Galí (1999), Francis and Ramey (2003), Galí and Rabanal (2005), and Christiano, Eichen-
baum, and Vigfusson (2003).
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than implied by the key identifying restriction, and depend on model structure, the
nature of the underlying shocks, and on variable selection in the SVAR. Accord-
ingly, we caution that empirical estimates of the effects of technology shocks
should not be regarded as model-independent stylized facts. Instead, the inter-
pretation of results derived from the Galí approach should be informed by the
model or class of models that the researcher regards as most plausible, with the
model serving as a guidepost about biases likely to arise and the limitations of
the approach.

The rest of this paper is organized as follows. Section 2 outlines our baseline
RBC model and describes the calibration. Section 3 reviews the Galí identification
scheme. Section 4 reports our results for the RBC model, and Section 5 discusses
the results for the sticky price/wage model. Section 6 concludes.

2. The RBC Model

We begin by outlining a relatively standard real business cycle model. The model
structure is very similar to that analyzed by King, Plosser, and Rebelo (1988),
though we include a broader set of shocks.

2.1. Household Behavior

The utility function of the representative household is

Et

∞∑
j=0

βj


log

(
Ct+j

) − χ0,t+j

N
1+χ
t+j

1 + χ


 , (1)

where the discount factor β satisfies 0 < β < 1 and Et is the expectation
operator conditional on information available at time t . The period utility function
depends on consumption, Ct , labor, Nt , and a stochastic shock, χ0t , that may be
regarded as a shock to labor supply. We assume that this labor supply shock
evolves according to:

log(χ0,t ) = (1 − ρχ) log(χ0) + ρχ log(χ0t−1) + σχεχt , (2)

where χ0 denotes the steady state value of χ0t and εχt ∼ N(0, 1).
The representative household’s budget constraint in period t states that its

expenditure on consumption and investment goods (It ) and net purchases of
bonds Bt+1 must equal its after-tax disposable income:

Ct + It + 1

1 + rt
Bt+1 − Bt = (1 − τNt )WtNt + �t + Tt

+ (1 − τKt )RKtKt + τKtδKt . (3)
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The household earns after-tax labor income of (1 − τNt )WtNt , where τNt is a
stochastic tax on labor income, and also receives an aliquot share of firm profits �t

and a lump-sum government transfer of Tt . The household leases capital services
to firms at an after-tax rental rate of (1 − τKt )RKt , where τKt is a stochastic
tax on capital income. The household receives a depreciation write-off of τKtδ

per unit of capital (where δ is the steady-state depreciation rate of capital). Pur-
chases of investment goods augment the household’s capital stock according to
the transition law:

Kt+1 = (1 − δ)Kt + It . (4)

In every period t , the household maximizes utility (1) with respect to its
consumption, labor supply, investment, (end-of-period) capital stock, and real
bond holdings, subject to its budget constraint (3), and the transition equation for
capital (4).

2.2. Firms

The representative firm uses capital and labor to produce a final output good
that can either be consumed or invested. This firm has a constant returns-to-scale
Cobb–Douglas production function of the form:

Yt = Kθ
t (ZtVtNt )

1−θ , (5)

In the above, Zt is a unit-root process for technology whose law of motion is
governed by:

log(Zt ) − log(Zt−1) = µz + σzεzt , (6)

and Vt is a stationary process for technology whose law of motion is governed
by:

log(Vt ) = ρV log(Vt−1) + σV εV t , (7)

with εzt , εV t ∼ N(0, 1).
The firm purchases capital services and labor in perfectly competitive factor

markets, so that it takes as given the rental price of capital RKt and the aggregate
wage Wt. Since the firm behaves as a price taker in the output market as well as in
factor markets, the following efficiency conditions hold for the choice of capital
and labor:

Wt

MPLt

= RKt

MPKt

= 1. (8)

2.3. Government

Some of the final output good is purchased by the government, so that the market-
clearing condition is:

Yt = Ct + It + Gt. (9)
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Government purchases are assumed to have no direct effect on the utility function
of the representative household. We also assume that government purchases as a
fraction of output, gt = Gt/Yt , are exogenous and evolve according to:

log(gt ) = (1 − ρg) log(g) + ρg log(gt−1) + σgεgt , (10)

where g denotes the steady state value of gt and εgt ∼ N(0, 1).
The government’s budget is balanced every period, so that total taxes—which

include both distortionary taxes on labor and capital income—equal the sum of
government purchases of the final output good and net lump-sum transfers to
households.8 Hence, the government’s budget constraint at date t is:

Tt + Gt = τNtWtNt + τKt (RKt − δ)Kt . (11)

The tax rates on capital and labor are assumed to be exogenous and evolve accord-
ing to:

τit = (1 − ρτi
)τi + ρτi

τi,t−1 + στi
ετi t , (12)

where τi is the steady state tax rate and ετi t ∼ N(0, 1) for i = K, N .

2.4. Solution and Calibration

To analyze the behavior of the model, we first apply a stationary-inducing trans-
formation to those real variables that share a common trend with the level of
technology. This entails detrending real GDP, the GDP expenditure components,
and the real wage by Zt and the capital stock, Kt , by Zt−1. We then compute
the solution of the model using the numerical algorithm of Anderson and Moore
(1985), which provides an efficient implementation of the solution method pro-
posed by Blanchard and Kahn (1980).

Table 1 summarizes the calibrated values of most of the model’s parame-
ters. The model is calibrated at a quarterly frequency so that β = 1.03−0.25 and
δ = 0.02. The utility function parameter χ is set to 1.5 so as to imply a Frisch
elasticity of labor supply of 2/3, an elasticity well within the range of most empir-
ical estimates.9 The capital share parameter θ is set to 0.35, and we normalized
χ0 = 1, as χ0 does not affect the model’s log-linear dynamics.

Using data on the share of government consumption to U.S. GDP, we fit a
first order autoregression for gt (allowing for a linear time trend) and estimated ρg

8. The assumption of a balanced budget is not restrictive given the availability of lump-sum taxes
or transfers.
9. See, for example, Pencavel (1986), Killingsworth and Heckman (1986), and Pencavel (2002).
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Table 1. Parameters values common across calibrated
versions of model.∗

β = 1.03−0.25 τK = 0.38
χ0 = 1 ρg = 0.98
χ = 1.5 σg = 0.003
δ = 0.02 ρτN

= 0.98
θ = 0.35 στN

= 0.0052
µz = 0.0037 ρχ = 0.95
g/y = 0.20 ρτK

= 0.97
τN = 0.22 ρV = 0.95
∗g/y denotes the steady-state value of the ratio of government consumption to
output.

and σg in equation (10) to be 0.98 and 0.003, respectively. We set g so that the
ratio of government spending to output is 20% in the model’s nonstochastic steady
state.

For the parameters governing the two tax rate series, we estimated equa-
tion (12) using OLS after constructing these tax rates series based on U.S. data
from 1958–2002 following the methodology described in Jones (2002).10 Our
estimates implied τN = 0.22, ρτN

= 0.98, and στN
= 0.0052 for the labor tax

rate and τK = 0.38, ρτK
= 0.97, and στK

= 0.008 for the capital tax rate.
For reasons that we discuss next, it is convenient to exclude capital tax rate

and temporary technology shocks from our benchmark calibration of the RBC
model; thus, we set στK

= σV = 0. In this case, we can obtain a time series for Zt

by defining the Solow residual as:

St = Yt

Kθ
t N1−θ

t

, (13)

and noting that Zt = S
1/1−θ
t . We then estimate µz = 0.0037 and σz = 0.0148.

Later, we give special attention to the capital tax rate and temporary technology
shocks in an alternative parameterization of the RBC model.

In the absence of labor-supply shocks, our calibrated RBC model would sig-
nificantly underestimate the volatility in hours worked—a familiar problem in the
real business cycle literature. To see this, Table 2 compares the second moments
of several key variables that are implied by our model with their sample counter-
parts based on U.S. data. As shown in the column labelled “σχ = 0”, the model
significantly understates the ratio of the standard deviation of HP-filtered hours
to the standard deviation of HP-filtered output. For our benchmark calibration,

10. Following Appendix B in Jones (2002), we used quarterly data collected by the Bureau of
Economic Analysis.
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Table 2. Selected moments and parameter values of calibrated versions of model.a

Real business cycle Sticky prices and wages

With additional With additional
Moment U.S. Datab σχ = 0 Benchmark shocks Benchmark shocks

σy 2.17 1.38 1.72 1.67 2.00 1.82
σh/σy 0.80 0.28 0.80 0.80 0.80 0.80
σc/σy 0.47 0.73 0.61 0.56 0.78 0.72
σi/σy 2.91 1.98 2.26 2.55 2.35 2.53
σ
S 0.96 0.96 0.96 0.96 0.96 0.96

Parameter values
σz 0.0148 0.0148 0.0104 0.0152 0.0103
σχ 0 0.024 0.0198 0.0619 0.0335
στK

0 0 0.008 0 0.008
σV 0 0 0.0103 0 0.0102

aAll moments except σ
S were computed by first transforming the data using the HP-filter (with λ = 1600). σ
S refers
to the standard deviation of the growth rate of the Solow residual.
bσy and σh were computed using BLS data on nonfarm business sector output and hours from 1958–2002. σc/σy and
σi/σy were taken from Christiano and Fisher (1995), who used DRI data from 1947–1995.

we address this issue by incorporating labor supply shocks.11 In particular, we
set ρχ = 0.95 and choose an innovation variance σχ that allows the model to
match the observed standard deviation of HP-filtered hours relative to the standard
deviation of HP-filtered output.

Table 2 shows the selected moments for the benchmark RBC model. A com-
parison of the model’s implications for the volatility of output, investment, and
consumption to the corresponding sample moments suggests that this calibrated
model performs fairly well on these dimensions, even though it was not calibrated
specifically to match these moments.

3. The SVAR Specification

In this section, we outline the estimation procedure that a researcher would follow
given a single realization of data. The structural VAR takes the form:

A(L)Xt = ut = A−1
0 et , (14)

where A(L) = I − A1L − · · · − ApLp, and Ai for i = 1, 2, . . . , p is a square
matrix of reduced-form parameters; L is the lag operator, and Xt , ut , and et are
4 × 1 vectors of endogenous variables, reduced-form innovations, and structural
innovations, respectively. The lag length, p, is chosen by using the information
criterion in Schwarz (1978), where p ∈ {1, 2, . . . , 10}.

11. Others who have followed this approach include Hall (1997), Shapiro and Watson (1988), and
Parkin (1988).
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In our benchmark specification of the VAR, Xt contains the log difference of
average labor productivity, the log of hours worked, the log of the consumption-
to-output ratio, and the log of the investment-to-output ratio. All variables are
expressed as a deviation from the model’s nonstochastic steady state, and average
labor productivity is defined as Yt/Nt . The inclusion of average labor productivity
growth in Xt is standard in the empirical literature using VARs to identify technol-
ogy shocks. While the empirical literature is divided on whether hours worked
are best included in levels or differences, the former specification is selected,
because the DGE model implies that hours are stationary in levels. The ratios of
investment and consumption to output are included in the VAR, in part because
Christiano, Eichenbaum, and Vigfusson (2003) have found these variables to be
important in controlling for omitted-variable bias when using U.S. data.

The identification of the technology shock is achieved in the following way.
First, it is assumed that the innovations are orthogonal and have been normalized
to unity so that

Eete
′
t = A0�A′

0 = I, (15)

where � denotes the variance-covariance matrix of the reduced-form residuals.
Denote the first element of et as ezt , the technology shock identified by the VAR.
Following Galí (1999), a researcher would then impose that the technology shock
is the only shock that can affect the level of productivity in the long run, an
assumption that is consistent with the models we consider. Thus, letting R(L) =
A(L)−1, it follows that

[
R(1)A−1

0

]
1j

= 0 for j �= 1. (16)

Here, R(L) is the reduced-form moving average representation of the VAR given by

R(L) =
∞∑
i=0

RiL
i, (17)

where Ri is a 4 × 4 matrix and R0 = I . The restrictions associated with equation
(16) are imposed through a Cholesky decomposition after estimating A(L) and
� using least squares. This decomposition is used to solve for the first column of
A−1

0 given that R(1) = A(1)−1. No attempt is made to identify the nontechnology
shocks.

In our Monte Carlo study, we generate 10,000 data samples from the relevant
DGE model, and apply the estimation strategy discussed above to each sample.
Every data sample consists of 180 quarterly observations.12

12. In the appendix, we discuss the sensitivity of our results to different sample lengths.
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4. Estimation results for the RBC Model

Figure 1 reports the response of labor productivity, hours worked, consumption,
investment, and output to a technology shock for the benchmark calibration of
the RBC model.13 In each panel, the solid lines show the true responses from the
DGE model. The innovation occurs at date 1 and has been scaled so that the level
of labor productivity rises by 1% in the long run.

The dashed line in each panel shows the mean of the impulse responses
derived from applying our benchmark four-variable SVAR to the 10,000 artificial
data samples (the median responses are nearly identical).14 The dotted lines show
the 90% pointwise confidence interval of the SVAR’s impulse responses.15

As shown in Figure 1, the mean responses of labor productivity, consumption,
investment, and output have the same sign and qualitative pattern as the true
responses. As indicated by the pointwise confidence intervals, the SVAR is likely
to give the appropriate sign of the response for these variables. For hours worked,
the mean estimate is also qualitatively in line with the true response; however, the
confidence interval is wide, indicating that there is a nonnegligible probability of
a negative estimate.

Quantitatively, the SVAR does not perform as well. As seen in Figure 1, the
mean responses of the SVAR systematically underestimate labor productivity,
consumption, investment, and output, while overestimating hours worked. To
gauge the size of the bias, the top row of Table 3 reports the average absolute
percent difference between the mean response and the true response over the first
12 quarters for each of the variables except hours worked.16 For hours, Table 3
reports the absolute value of the difference between the mean estimated response
and the true response (we simply report the difference because the true response
is very small). As can be evinced from the first row of Table 3, labor productivity
is underestimated by the SVAR by 40% on average over the first 12 quarters after
the innovation to technology, while output is underestimated by 25%. We defer
our explanation of these results to Section 4.1.

While useful for illustrating the bias associated with the SVAR’s estimates, the
relative distance measure does not capture the uncertainty that a researcher con-
fined to a single draw of the data would confront. After all, the impulse response

13. More precisely, the responses shown are the deviations of the log level of each variable from
the steady-state growth path.
14. We scale up the technology innovation derived from the SVAR by the same constant factor as
applied to the true innovation.
15. These confidence intervals are also constructed from the estimated impulse responses derived
from applying the SVAR to the 10,000 artificial data samples from our model.
16. For variable i, this measure is defined as rdm

i = 1
12

∑12
l=1 |rdm

l,i | where rdm
l,i = (d̂m

l,i −d∗
l,i )/(d

∗
l,i ),

and d∗
l,i and d̂m

l,i denote the DGE model’s impulse response and the SVAR’s mean response to a
technology shock, respectively, at lag l.
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Figure 1. Responses to technology shocks in the benchmark RBC model.∗

Note: ∗VAR results based on 10,000 samples of 180 quarterly observations. In the lower right panel, T bias refers to bias
that arises from approximating the true VARMA process with a VAR of order 4. The R bias reflects small-sample bias
from estimating the reduced-form VAR. The A bias reflects small-sample bias associated with the transformation of the
reduced-form to the structural form.



“zwu005050294” — 2005/10/8 — page 1249 — #13

Erceg, Guerrieri, and Gust Long-Run Restrictions on a Vector Autoregression 1249

Table 3. Distance between mean estimates and true impulse responses.a

Labor
Experiment productivity Output Hours Consumption Investment

RBC model 0.40 0.25 0.09 0.28 0.19
With σz = 1/3X 0.49 0.02 0.34 0.11 0.21
With lower persistenceb 0.17 0.16 0.01 0.16 0.15
With lower persistenceb and δ = 0.9 0.10 0.10 0.00 0.09 0.10
With hours differenced 0.24 0.33 0.08 0.30 0.34
With additional shocksc 0.22 0.02 0.14 0.13 0.15

Sticky price/Wage model 0.34 0.33 0.05 0.34 0.32
With lower persistenceb and δ = 0.9 0.19 0.20 0.03 0.20 0.30
With hours differenced 0.38 0.37 0.06 0.37 0.37
With additional shocksc 0.29 0.29 0.05 0.29 0.29

aAbsolute value of percent difference between mean estimated response and true model response averaged over first
12 periods. For hours worked, we report the absolute value of the difference from the true model response.
bLower persistence refers to the case where AR(1) parameters of nontechnology shocks are set to half the benchmark
values.
cThe additional shocks are capital tax rate and temporary technology shocks.

derived using a single realization of the data may diverge substantially from the
mean. Accordingly, we consider an alternative measure of how well the SVAR’s
point estimates of the impulse responses match the truth. For variable i, this
measure is defined as

P̂i

(
1

3

)
= P

(
|rdl,i | ≥ 1

3

)
, ∀l ∈ {1, 2, . . . , N}, (18)

where rdl,i = (d̂l,i − d∗
l,i )/(d

∗
l,i ) and d̂l,i denotes the estimated impulse response

for the ith variable at lag l for a given draw of data, and d∗
l,i denotes the response

from the DGE model. In words, P̂i(1/3) is the probability that the SVAR produces
an impulse response that lies at least 33% above or below the true response for
all lags between 1 and N, which we call a “large” error. Tables 4, 5, and 6 show
these probabilities for N equal to two, four, and twelve quarters, respectively (as
noted later, we define the measure of a large error for hours worked differently).
As shown in the top row of Table 5, the probability of a large error over the first
year is 43% for labor productivity and 24% for output. Furthermore, we found
that nearly all of the large misses of the SVAR’s impulse responses for output
and labor productivity were the result of underpredicting the true response. Given
the strict criterion that only counts impulse response functions that lie uniformly
outside the 33% band, our results suggest considerable estimation uncertainty
about the quantitative effects of a technology shock.

While the probability of underestimating labor productivity, consumption,
output, and investment is substantial, the probability of inferring an incorrect
sign for several quarters is very low (not reported). It is also interesting to assess
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Table 4. Probability that estimated response is uniformly far from true response over first
two quarters.a

Labor
Experiment productivity Output Hours Consumption Investment

RBC model 0.48 0.27 0.26 0.31 0.35
With σz = 1/3X 0.61 0.67 0.28 0.52 0.78
With lower persistenceb 0.10 0.08 0.16 0.04 0.15
With lower persistenceb and δ = 0.9 0.03 0.08 0.37 0.07 0.10
With hours differenced 0.27 0.39 0.42 0.34 0.44
With additional shocksc 0.34 0.40 0.23 0.26 0.61

Sticky price/Wage model 0.35 0.31 0.02 0.36 0.79
With lower persistenceb and δ = 0.9 0.12 0.16 0.00 0.15 0.70
With hours differenced 0.41 0.35 0.03 0.41 0.80
With additional shocksc 0.38 0.35 0.10 0.30 0.86

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or below the true
response for the first two quarters. For hours worked, the probability that the sign of the estimated response is incorrect
in each of the first two quarters.
bLower persistence refers to the case where AR(1) parameters of nontechnology shocks are set to half the benchmark
values.
cThe additional shocks are capital tax rate and temporary technology shocks.

the probability of inferring a response of hours worked that has the incorrect sign
in the first few periods, given the significant attention recent research has devoted
to this question. Accordingly, for hours worked, Tables 4, 5, and 6 report the
probability that the estimated response of hours worked is incorrect (negative in
this model) in each of the first 2, 4, and 12 quarters, respectively. As shown in

Table 5. Probability that estimated response is uniformly far from true response over first
four quarters.a

Labor
Experiment productivity Output Hours Consumption Investment

RBC model 0.43 0.24 0.23 0.28 0.28
With σz = 1/3X 0.54 0.58 0.25 0.44 0.70
With lower persistenceb 0.05 0.03 0.04 0.03 0.05
With lower persistenceb and δ = 0.9 0.02 0.04 0.20 0.04 0.05
With hours differenced 0.22 0.35 0.38 0.30 0.39
With additional shocksc 0.30 0.31 0.21 0.22 0.51

Sticky price/Wage model 0.31 0.26 0.02 0.32 0.71
With lower persistenceb and δ = 0.9 0.10 0.12 0.00 0.13 0.30
With hours differenced 0.37 0.30 0.03 0.38 0.71
With additional shocksc 0.34 0.30 0.07 0.28 0.78

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or below the true
response for the first four quarters. For hours worked, the probability that the sign of the estimated response is incorrect
in each of the first four quarters.
bLower persistence refers to the case where AR(1) parameters of nontechnology shocks are set to half the benchmark
values.
cThe additional shocks are capital tax rate and temporary technology shocks.
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Table 6. Probability that estimated response is uniformly far from true response over first
12 quarters.a

Labor
Experiment productivity Output Hours Consumption Investment

RBC model 0.36 0.17 0.16 0.22 0.16
With σz = 1/3X 0.40 0.36 0.19 0.32 0.46
With lower persistenceb 0.02 0.01 0.00 0.01 0.01
With lower persistenceb and δ = 0.9 0.01 0.01 0.06 0.01 0.01
With hours differenced 0.13 0.29 0.32 0.25 0.31
With additional shocksc 0.22 0.19 0.17 0.15 0.30

Sticky price/Wage model 0.25 0.23 NA 0.25 0.61
With lower persistenceb and δ = 0.9 0.05 0.07 NA 0.07 0.15
With hours differenced 0.30 0.26 NA 0.30 0.61
With additional shocksc 0.24 0.25 NA 0.22 0.63

aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or below the
true response for the first 12 quarters. For hours worked, the probability that the sign of the estimated response is incorrect
in each of the first 12 quarters. In the sticky price/wage model, this probability is not reported as the model response
changes its sign after five quarters.
bLower persistence refers to the case where AR(1) parameters of nontechnology shocks are set to half the benchmark
values.
cThe additional shocks are capital tax rate and temporary technology shocks.

Figure 1, the true response of hours is positive, and there is upward bias in the
mean estimated response. Nevertheless, Table 5 shows that there is a 23% chance
a researcher would find that hours worked fell for four straight quarters in the
year following a technology shock.17

Galí (1999), Galí (2004), and Christiano, Eichenbaum, and Vigfusson (2003)
have employed SVARs with long-run restrictions to estimate the contribution of
technology shocks to business cycle fluctuations, and have used these estimates
to conclude that technology shocks only play a small role in driving output fluctu-
ations over the business cycle.18 We use our framework to assess the reliability of
these estimates. The top left panel of Figure 2 shows the cumulative distribution
function derived from Monte Carlo simulations of our estimator of the contri-
bution of technology shocks to output fluctuations. This contribution is defined
as RCz = σ 2

y|z/σ 2
y where σ 2

y denotes the unconditional variance of HP-filtered
output in the model and σ 2

y|z is the variance of HP-filtered output conditional on

17. This probability may seem surprisingly low given the width of the confidence intervals shown
in Figure 1. However, it is important to note that the confidence intervals are pointwise, while the
probabilities reported in Tables 4–6 are uniform measures, requiring that hours worked fall in each
period for 2, 4, or 12 quarters. Furthermore, the distribution of the estimated responses of hours at a
given lag is not uniform.
18. A notable exception is Fisher (2002), who attempts to discriminate between multifactor pro-
ductivity shocks and investment-specific technology shocks.
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Figure 2. Estimated cumulative distribution functions for the contribution of unit-root technology
shocks to HP-filtered output variation.∗

Note: ∗The star symbols on the charts’ abscissae denote the bounds of the 90% confidence intervals.
aThe additional shocks are capital tax rate and temporary technology shocks.
bLower persistence refers to the case where AR(1) parameters of nontechnology shocks are set to half the benchmark
values.
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only unit-root technology shocks.19 The distribution function appears close to
uniform over the unit interval, so that the 90% confidence bands for the estimator
include contributions ranging from 7% to 91% (confidence bands are indicated
by stars on the x-axis). Therefore, for the benchmark RBC model, this application
of the SVAR methodology yields uninformative estimates of the contribution of
technology shocks to output fluctuations at business cycle frequencies.

4.1. Interpreting the Bias

In this section, we estimate the contribution of two sources of bias in the impulse
responses shown in Figure 1. We then provide an interpretation of the economic
mechanisms accounting for the bias in the RBC model.

The first source of bias, which we call “truncation bias,” arises because the
finite-ordered VAR chosen by our estimation procedure only provides an approx-
imation to the true dynamics implied by the model. In particular, our model
produces a VARMA(4,5) representation and even though this VARMA process
is invertible, a finite-ordered VAR may be misspecified to some degree.20 Cooley
and Dwyer (1998) emphasized that most popular DGE models imply VARMA
representations; thus, truncation bias is a fairly general phenomenon. The second
source of bias is the small sample bias that arises in all time series work. Faust and
Leeper (1997) highlighted small sample imprecision as a problem in this context,
although they did not focus on bias in particular.

To measure the truncation bias, we calculate the population limit of a VAR(4)
based on our model. In principle, we could estimate this using one very long
sample drawn from the model, but we simply use the relevant population moments
from the model to derive the VAR(4).21

Figure 3 compares the effects of a technology shock derived from the popu-
lation SVAR with the true model responses. Though the four variables in the VAR
have a VARMA(4,5) representation in our benchmark RBC model, it is clear that
the truncation bias appears negligible for each of the variables depicted. Thus, for

19. In order to estimate σ 2
y|z we did the following: for a given replication of data from the DGE

model, we used the point estimates from the SVAR to bootstrap a series of 41,000 observations for
output conditional on only the identified technology shocks; we HP-filtered this series after dropping
the first 1,000 observations. Similarly, for σ 2

y , we bootstrapped a series for output from the fitted
VAR using all the shocks.
20. We checked numerically that the benchmark RBC model implied a VARMA process that is
invertible and thus a fundamental representation. See the appendix for details of these calculations.
Hansen and Sargent (2004) and Lippi and Reichlin (1993) analyze the problem in which the moving
average component is not invertible so that it is not possible to recover the fundamental shocks from
a VAR of any lag length.
21. Of course, if one had a long sample, one could choose a longer lag length. We use this population
VAR(4) only to measure the bias that is due to the inherent inability of a VAR(4) to approximate the
VARMA(4,5) structure of the model.
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Figure 3. Responses to a technology shock in the benchmark RBC model using population
moments.∗

Note: ∗Results based on VARs of order 4 estimated with population moments.

the benchmark calibration of the RBC model, the assumption that a short-ordered
VAR provides a good approximation to the true data-generating process seems
warranted. This proves attractive heuristically, because we can interpret almost
all of the bias as arising from a small sample.

Accordingly, we further decompose the small-sample bias into two parts,
and show that most of the small sample bias is attributable to the difficulty in
precisely estimating the long-run response of variables to the innovations in the
VAR. Noticing that equation (14) can be expressed as:

Xt = A(L)−1A−1
0 et = R(L)A−1

0 et , (19)

it is evident that the response of Xt to the underlying innovations, et , is influenced
both by the reduced-form moving average terms, R(L), and by the identifying
restrictions as reflected in A−1

0 . Therefore, we can think of one part of the bias as
reflecting the small-sample error in estimating the reduced-form moving average
terms, which we call the “R bias”. The second part reflects the error associated with
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transforming the reduced form into its structural form by imposing the long-run
restriction. This latter error occurs because small imprecision in estimating A(L)

is exacerbated by the nonlinear mapping involved with imposing the long-run
restriction. As a result, estimates of A−1

0 can be biased in small samples. We call
the error associated with the transformation of the reduced form to the structural
form “A bias.”22

Returning to the lower right panel of panel of Figure 1, we provide a decom-
position of the overall bias in the mean response of labor productivity. The overall
bias is represented by the solid line labelled “total bias”, and is simply the differ-
ence between the mean estimated response of labor productivity to a technology
innovation and the true response. The dotted line labelled “T bias” for truncation
bias shows the bias introduced by assuming that the variables in the VAR can
be represented by a VAR with only four lags. As suggested by Figure 3, this
source of bias comprises only a tiny fraction of the bias in the mean response of
labor productivity. From the dashed-dotted line labelled “A bias”, it is clear that
most of the small-sample bias initially is attributable to the error in transforming
the reduced form into its structural form using the long-run restriction.23 Even-
tually, however, imprecision in estimating the long-run responses has a roughly
commensurate effect on each component, so that at longer horizons the R bias
contributes about as much to the bias as the A bias.

We now use the benchmark RBC model to provide an economic interpretation
of the small-sample bias that illustrates how it depends on model structure. This
bias can be attributed largely to two related factors in our RBC model. First, the
slow adjustment of capital makes it hard to estimate the long-run impact of a tech-
nology shock on labor productivity, which serves as a source of downward bias in
the estimated impulse responses. Second, the SVAR has difficulty disentangling
technology shocks from highly persistent nontechnology shocks, so that the esti-
mated technology shock may incorporate a sizeable nontechnology component.
The second source of bias has more pronounced effects on the estimated responses
to a technology shock as the relative magnitude of nontechnology shocks rises,
and as the nontechnology shocks become more persistent.

We conduct two experiments to show that the small-sample bias is greatly
reduced when the exogenous and endogenous sources of persistence in the model

22. Our decomposition is discussed in greater detail in Appendix A.3, where we also provide more
explicit definitions of the alternative types of bias. As noted in the appendix, our “A bias” reflects
not only the error associated with transforming the reduced-form to structural, but also the error
associated with estimating �, the variance/covariance matrix for et . We found that this latter source
of error was small.
23. In our analysis, there appears to be a connection between the type of imprecision emphasized by
Faust and Leeper (1997) and the weak instrument problem discussed by Pagan and Robertson (1998).
In particular, we find that when we estimate the SVAR using the instrumental variable approach of
Shapiro and Watson (1988), parameter values of the RBC model that implied the “A bias” was large
corresponded to situations where there were also weak instruments.
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are decreased. First, as seen in the rows of Tables 3 to 6 labelled “with lower
persistence”, we analyze the effects of halving all of the AR(1) parameters of
the nontechnology shocks from their benchmark values. Table 3 shows that the
(percentage) distance between the mean and the true response narrows for all
variables and especially for labor productivity, and Tables 4 to 6 indicate that
there are sizeable declines in the frequencies of large misses for all the variables
we consider. Our second experiment combines the lower persistence of nontech-
nology shocks with an increase in the depreciation rate of capital from δ = 0.02
to δ = 0.9. In this case, labor productivity adjusts more quickly in response to
both technology and nontechnology shocks. Table 3 shows that the mean bias
falls below 10% for all the variables except hours worked.24,25

Our final experiment in this section illustrates the important influence that the
nontechnology shocks may have on the SVAR’s estimated responses. We reduce
the innovation variance of the technology shock to 0.0049, or one-third of its
benchmark value, thus effectively increasing the relative size of the nontechnology
shocks. The mean estimated responses and true responses to a technology shock
under this alternative parameterization are depicted in Figure 4 (and reported
in Table 3 in the row labelled “with σz = 1/3X”). With this increase in the
relative size of the nontechnology shocks, the estimated responses look more
like the effects of labor supply shocks (the dominant nontechnology shock in
the benchmark calibration). To see this, we also plot the true responses to a
labor supply shock in the same figure. Observe that relative to their effects on
labor productivity, labor supply shocks have much larger effects on hours worked
and investment than a true technology shock. Given that estimates derived from
the SVAR approach confound labor supply with true technology innovations,
the former shocks are a source of upward bias in the estimated responses of
hours worked and investment to a technology shock. Thus, with the increased
importance of labor supply shocks in this alternative calibration, the upward bias
in the mean response of hours worked is much more pronounced than under
our benchmark calibration, and the bias in investment shifts from negative to
noticeably positive.

24. If we only increase δ and leave the persistence of the exogenous shocks at their benchmark
values, then there is only a small reduction in the bias for most variables with the exception of labor
productivity. For example, the average bias in labor productivity over the first 12 quarters declines
from 40% in our benchmark RBC model to 23%, but the average bias for output only declines from
25% to 22%.
25. With less exogenous and endogenous persistence, the SVAR’s ability to estimate the contri-
bution of unit-root technology shocks to output fluctuations at business cycle frequencies improves
noticeably, though the confidence interval is quite wide. For example, Figure 2 shows that the 90%
confidence bounds range from contributions of 38% to 90% for this alternative parameterization
of the RBC model. It is only when the number of observations are increased by several multiples
that the confidence bands become reasonably tight (as illustrated for the case of 1000 observations
using this alternative parameterization).
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Figure 4. Responses to technology and labor supply shocks in the RBC model.∗

Note: ∗VAR results based on 10,000 samples of 180 quarterly observations using the RBC model with smaller technology
shocks (σz = 0.0049).

4.2. Sensitivity Analysis

We next use sensitivity analysis to illustrate how the performance of the Galí
procedure may be influenced by the selection of variables in the VAR, the trans-
formations applied, and the inclusion of a wider array of shocks.

Figure 3 shows the responses derived from a four-variable VAR that is mod-
ified to include hours in differences rather than levels. As above, it is conve-
nient to begin by abstracting from small-sample issues, and hence replace sample
moments with the model’s population moments in estimating the VAR (again we
use four lags in the VAR). Our model implies that hours worked are stationary
so that it might be expected that differencing hours would impair the ability of
a short-ordered VAR to recover the true responses.26 However, it still does very

26. We found that the VARMA process for the four variables in the VAR with hours in differences
has a root on the unit circle so that the VARMA process is non-invertible but remains fundamental
(this is also true for the two-variable specification with hours in differences considered next).
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Figure 5. Responses to a technology shock in benchmark RBC model for bivariate VAR
specifications∗

Note: aResults based on VARs of order 4 estimated with model’s population moments. bMean results based on 10,000
samples of 180 quarterly observations.

well in capturing the quantitative effects of a technology shock for the other vari-
ables, even though the SVAR implies some upward bias in the response of hours.
Turning to the small sample results in Tables 3–6, there is only modest evidence
of a deterioration in performance.

Figure 5 shows responses derived from alternative specifications of bivari-
ate SVARs that include labor productivity growth and either the level of hours
worked (the dashed lines) or the first difference of hours worked (the dash-dotted
line). These specifications have often been utilized in the empirical literature
applying the Galí methodology. The upper panel uses the population moments
to derive each of the VARs (using four lags), while the lower panel reports the
mean impulses derived from the Monte Carlo simulations (as in Section 3, the
Schwartz criterion is used to select lag length). It is clear from the upper panel
that the two-variable specifications perform less adeptly than our four-variable
specification in recovering the true responses: there is upward bias in the hours
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in levels specification, while there is pronounced downward bias for the hours
in differences specification. The lower panel shows that the truncation bias is
reflected in the mean bias observed in small samples.

Our results for these bivariate SVARs are quite similar to those reported by
Chari, Kehoe, and McGrattan (2005). These authors also highlight (what we term)
truncation bias as a significant problem for the two-variable specification, and
provide an insightful discussion about the origin of this bias in the RBC model:
namely, it occurs primarily because capital is omitted from the SVAR, and this
variable has a significant and long-lasting influence on the dynamic responses
of labor productivity growth and hours worked. They proceed to argue that the
poor performance of the bivariate SVARs (especially with hours in differences)
makes this approach wholly unsuited to evaluating the plausibility of the RBC
model relative to various alternatives, and thus provide a rebuttal to a substantial
literature that has utilized SVARs to question the empirical relevance of that
model. Finally, insofar as they regard the RBC model as representing a best case
for the SVAR methodology, they surmise that application of the SVAR approach
to other models would also be likely to yield highly imprecise estimates, and lead
to mistaken inferences.

While we defer a more detailed response to the critique of Chari, Kehoe, and
McGrattan (2005) to Section 5.4, we believe that our analysis that considers both
a wider set of SVAR specifications and models provides a broader perspective for
evaluating the SVAR approach. Clearly, our analysis of the four-variable SVAR
specifications above (with hours in levels and differences) suggests that certain
specifications can perform reasonably well in eliciting the true responses in the
RBC model: the problem of truncation bias highlighted by Chari, Kehoe, and
McGrattan (2005) is minimized in our benchmark RBC model insofar as the
consumption and investment shares help proxy for the omitted capital stock.27

Although Chari, Kehoe, and McGrattan (2005) may be justified in criticizing
some of the specific empirical research critiquing RBC models, we believe the
SVAR approach has much greater potential to yield informative estimates than
these authors suggest.

Finally, while we show below that our four-variable VAR also performs
reasonably well in the model with nominal rigidities, we caution that variable
selection should be tailored to the model(s) that the researcher wishes to evaluate.

27. For a more detailed discussion of this issue, see Appendix 7.4 in our working paper, Erceg,
Guerrieri, and Gust (2004). For the benchmark RBC model, we show that the R2 statistic for a
regression of the capital stock scaled by Zt on the variables in our benchmark four-variable VAR
is near one. By contrast, the R2 for a regression of scaled capital on the variables in the bivariate
VAR is very low, suggesting it is unable to capture the dynamic influence of the omitted capital
stock. In interpreting these results, we caution that while the four-variable VAR performs well in
the benchmark RBC model, the exogenous shocks are also model state variables, and their omission
from the VAR can lead to the poor identification of technology shocks. We illustrate this possibility
in Figure 6 discussed.
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Figure 6. Responses to a technology shock in the RBC model with additional shocks using popu-
lation moments.∗

Note: ∗Results based on VARs of order 4 estimated with model’s population moments. VAR response for “cap. tax
shock” refers to the case where the data-generating process is the benchmark RBC model augmented to include capital
tax rate shocks (with στK

= 0.008). VAR response for “temp. tech. and cap. tax shocks” refers to the case where the
data-generating process is the RBC model augmented to include both capital tax rate and temporary technology shocks.

In particular, our analysis suggests that if shocks other than the unit root shock to
technology have a large impact on labor productivity, the ability of a low-ordered
VAR to approximate the underlying VARMA process may deteriorate markedly,
even using our four-variable VAR specification: while the VARMA process in
this case is invertible, the additional shocks contribute to a very slowly-decaying
moving average component. This potential sensitivity is illustrated in Figure 6,
which reports responses from a four-variable SVAR that has four lags and is
derived using population moments from an alternative calibration of the RBC
model that includes capital tax rate and temporary technology shocks.28 There is

28. In this alternative calibration, the temporary technology shock contributes 50% of the variation
to the growth rate of the Solow residual, while the parameters of the capital tax rate process are
estimated using historical data (see Tables 1 and 2 for parameter estimates and selected second
moments).
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a sizeable deterioration in the performance of the population SVAR in this case,
with most of the divergence attributable to the temporary technology shocks.29

5. Sticky Price/Wage Model

In this section, we examine the robustness of our results by modifying the real
business model to include nominal and real frictions that have been found useful in
accounting for the observed behavior of aggregate data. These frictions include
sticky wages and prices, variable capacity utilization, costs of adjustment for
investment, and habit persistence in consumption. As noted above, one of the
principal differences between this model and the RBC model is that hours worked
decline initially in response to a technology shock rather than rise as in the RBC
model. Since our sticky price/wage model is similar to Christiano, Eichenbaum,
and Evans (2005) and Smets and Wouters (2003), we provide only a brief account
of how it can be derived by modifying the RBC model discussed above.

5.1. Model Description

We assume that nominal wages and prices are set in Calvo-style staggered con-
tracts in a framework similar to that discussed in Erceg, Henderson, and Levin
(2000). The wage and price contracts have a mean duration of four quarters, and
we set the wage and price markups both equal to 1/3. The inclusion of nominal
rigidities in the model requires us to specify a monetary policy rule. We assume
that the central bank adjusts the quarterly nominal interest rate (expressed at an
annual rate) in response to the four-quarter inflation rate and to the four-quarter
rate of growth of output:

it = γiit−1 + γππ
(4)
t + γy
y

(4)
t + σmεit , (20)

whereπ
(4)
t = log(Pt/Pt−4),Pt is the aggregate price level,
y

(4)
t = log(Yt/Yt−4),

and the monetary policy innovation, εit . (Note that constant terms involving the
inflation target and the steady-state real interest rate have been suppressed for sim-
plicity). Using U.S. quarterly data for the period 1983:1–2002:4, we estimated
values of γi , γπ , γy , and σm to be 0.80, 0.60, 0.28, and 0.006, respectively.30

29. Perhaps surprisingly, the small sample bias appears to decline noticeably relative to the bench-
mark RBC model, as seen in Table 3. This reflects that the upward bias in the response of labor
productivity and hours evident in the population SVARs appears to be roughly offset by the small
sample bias discussed in the previous section. However, the various sources of bias could reinforce
each other in alternative models, contributing to a considerably more pronounced deterioration in
performance than reported here.
30. We estimated equation (20) using instrumental variables where our instruments included lags
of output growth and inflation.
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We introduce habit persistence in consumption by modifying the utility func-
tion of the representative household in the following way:31

Et

∞∑
j=0

βj


log

(
Ct+j − φcC̄t+j−1

) − χ0,t+j

N
1+χ
t+j

1 + χ


 . (21)

Our approach follows Smets and Wouters (2003), among others, by assuming
that an individual cares about his consumption relative to the lagged value of
aggregate consumption, C̄t . We set φc = 0.6, close to the mean estimate of Smets
and Wouters (2003).

We incorporate variable capacity utilization into the sticky price/wage model
so that variation in the Solow residual reflects both changes in technology and
movements in the unobserved level of capacity utilization in response to all of the
underlying shocks. The production function modified to include variable capacity
utilization, ut , is given by:

Yt = (utKt )
θ ((ZtVt )Nt )

1−θ , (22)

where Zt and Vt are the unit-root and temporary shocks to technology described
earlier.

In our decentralized economy, households rent capital services (utKt ) to
firms, and choose how intensively the capital is utilized. We follow Christiano,
Eichenbaum, and Evans (2005) and assume that households pay a cost to varying
ut in units of the consumption good. These adjustment costs alter the budget
constraint of the representative household as follows:

Ct + It + 1

1 + rt
Bt+1 − Bt = (1 − τNt )WtNt + �t + Tt + (1 − τKt )RKtutKt

+ τKtδKt − φi

2

(It − It−1)
2

I 2
t−1

− ν0
u1+ν

t

1 + ν
. (23)

In the above, the term, ν0(u
1+ν
t )/(1 + ν), reflects the cost of adjusting the utiliza-

tion rate, where ν0 is normalized so that ut = 1 in nonstochastic steady state and ν

is set to 0.01, as in Christiano, Eichenbaum, and Evans (2005). Equation (23) also
reflects the addition of adjustment costs for investment, and in our calibration, we
set φi = 2.32

31. For simplicity, we suppress that our utility function depends on real money balances in a sepa-
rable fashion. With monetary policy specified by an interest rate rule and money separable in utility,
the equilibrium dynamics of our model can be determined independently of the quantity of money.
32. This is lower than the value of around 4 for φi used by Christiano, Eichenbaum, and Evans
(2005), who estimated φi based on the response of investment to a monetary shock. However, we
found that low values of φi (less than one) were necessary for our sticky price and wage model
to account for the unconditional volatility of investment relative to output. Our choice of φi is an
intermediate one between the values implied by these calibration procedures.
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As in our benchmark calibration of the RBC model, our benchmark calibra-
tion of the sticky price/wage model abstracts from capital tax rate and temporary
technology shocks by setting στK

= σV = 0. We used the method of moments
to estimate the innovation variances of the permanent technology shock (0.0152)
and the labor supply shock (0.069) by exactly matching the model’s implications
for the volatility of the Solow residual growth rate and the standard deviation of
(HP-filtered) hours worked relative to output to their sample counterparts. For the
other model parameters, shown in Table 1, we used the same values as for the
RBC model.

5.2. Estimation Results

Figure 7 exhibits the response of labor productivity, hours worked, consumption,
investment, and output to a technology shock for the benchmark sticky price/wage
model. In each panel the solid lines show the true responses from the DGE model.
In the same panels, the dashed lines show the mean responses from the SVAR
derived from Monte Carlo simulations (as described in Section 3). As in the case
of the benchmark RBC model, the mean response of each of these variables has
the same sign and qualitative pattern as the true response. Moreover, as suggested
by the pointwise confidence intervals, the SVAR is likely to correctly imply a
rise in labor productivity, consumption, and output in response to the technology
shock. The SVAR is also likely to capture the initial decrease in hours worked
that occurs following a technology shock.33 Both the mean response and the 90%
confidence intervals fall below zero in the two periods following the shock, in
line with the model’s response.

As in the case of the RBC model, the SVAR does not perform as well quanti-
tatively. The mean responses underestimate the true responses of labor productiv-
ity, output, consumption, and investment by roughly 30–35% (see Table 3). This
downward bias helps account for the substantial probability of making large errors
in estimating these variables, as shown in Tables 4–6. Overall, the probability of
making a large error in estimating most of the variables seems commensurate
with that of the RBC model, with the exception of investment. Interestingly, we
found that while the probability of estimating a response of labor productivity,
output, or consumption that was uniformly positive for four quarters following
the shock exceeded 90%, there was only a 63% chance of estimating a uni-
formly positive response of investment. Thus, in this model, there appears to be

33. As in Vigfusson (2004) and Francis and Ramey (2003), the real frictions play an impor-
tant role in accounting for the model’s implication of a fall in hours. Thus, the initial fall in
hours in the sticky price/wage model occurs for a fairly wide set of reasonable monetary policy
rules.
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Figure 7. The effects of technology shocks in benchmark sticky price/wage model.∗

Note: ∗VAR results based on 10,000 samples of 180 quarterly observations. In the lower right panel, T bias refers to bias
that arises from approximating the true VARMA process with a VAR of order 4. The R bias reflects small-sample bias
from estimating the reduced-form VAR. The A bias reflects small-sample bias associated with the transformation of the
reduced-form to the structural form.
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considerably more qualitative uncertainty about the effects of a technology shock
on investment.

The bottom left panel of Figure 2 shows the cumulative distribution func-
tion derived from Monte Carlo simulations of the estimator of the contribution of
technology shocks to explaining variations in HP-filtered output. The 90% con-
fidence bands for the estimator include contributions ranging from 7% to 80%.
Therefore, as in the benchmark RBC model, the Galí identification scheme pro-
vides little information about the importance of technology shocks in explaining
output fluctuations at business cycle frequencies.

We next examine the sources of bias in the mean responses using the same ana-
lytical framework that was applied to the RBC model. The dashed lines in the top
panel of Figure 8 show the responses to a technology shock derived from a SVAR
with four lags that uses the model’s population moments. While these responses
diverge slightly from the true responses, it is clear that a short-ordered population
VAR performs well in approximating the true VARMA process. Accordingly, as in
the benchmark RBC model, most of the bias in the estimated impulse responses
is attributable to the small-sample problems emphasized by Faust and Leeper
(1997).

The small-sample bias in this model depends on many of the same model
characteristics as identified using the RBC model. In particular, the bias arises
because the identification scheme has difficulty disentangling unit root technol-
ogy shocks from other shocks that may have highly persistent effects on labor
productivity, and because of slow capital adjustment (the latter plays less of a role
in accounting for bias, since variable capacity utilization induces labor produc-
tivity to rise more quickly to its long-run level). As shown in Table 3, the bias
is reduced when we decrease the persistence of the nontechnology shocks and
accelerate capital adjustment by setting δ = 0.9; however, the change in the bias
is somewhat less dramatic than in the RBC model.

5.3. Sensitivity Analysis in the Sticky Price/ Wage Model

We next investigate the sensitivity of our results to including a different set of
variables in the SVAR, to differencing hours worked, and to adding capital tax
rate and temporary technology shocks.34

The bottom panels of Figure 8 show results for the two bivariate population
SVARs considered in Section 4.2 (i.e., each SVAR has four lags and is derived by
replacing sample moments with corresponding population moments). The dashed
lines show the responses for the SVAR with labor productivity growth and hours in

34. For all these experiments, we checked that the VARMA process implied by the variables in the
SVAR was a fundamental representation.
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Figure 8. Responses to a technology shock in sticky price/wage model using population moments.∗

Note: ∗Results based on VARs of order 4 estimated with model’s population moments.

levels, while the dash-dotted lines show the responses of the alternative specifica-
tion with hours in differences. Notably, in stark contrast with their performance in
the RBC model, each specification does very well in accounting for the short-run
response of hours worked. The bivariate SVARs also perform quite well in small
samples. For example, Figure 9 illustrates the responses derived from estimating
the bivariate specification with hours in differences. The mean response of hours
lies very close to the true response in the short run and the confidence intervals
are somewhat narrower than in the four-variable specification with hours in levels
(see Figure 7).

Thus, the model with nominal rigidities provides an interesting example of
a model that could rationalize the use of the bivariate SVAR in estimation (as
often employed in the empirical literature). These results should help dispel the
presumption of Chari, Kehoe, and McGrattan (2005) that the RBC model presents
a best case for the SVAR approach. The considerably improved performance
of the bivariate VAR in this model may indeed seem surprising, insofar as it
includes a much larger set of endogenous state variables than the RBC model
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Figure 9. Responses to a technology shock in sticky price/wage model using a bivariate SVAR with
hours differenced.∗

Note: ∗VAR results based on 10,000 samples of 180 quarterly observations.
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(e.g., lagged consumption, investment, and the real wage). However, it turns out
that the dynamics of labor productivity growth and hours worked in this model
are simple enough that they can be more easily approximated by a short-ordered
VAR. This reflects the inclusion of variable capacity utilization in the sticky
price/wage model, which allows firms to vary their effective capital stock, utKt ,
in response to shocks. As a result, the capital stock, Kt , has a diminished influence
on the dynamics of labor productivity and hours relative to the RBC model (this
is particularly evident in the response of labor productivity, which reaches its
long-run level much more quickly than in the RBC model). It also reflects that
the additional state variables such as consumption and investment exert only a
small influence on the dynamics of labor productivity, and their effect on hours
is fairly transient.35

Overall, we find relatively little sensitivity of our results derived from this
model to the transformation applied to hours worked in the SVAR (levels vs. dif-
ferences). This applies both to our four-variable specification (shown in Figure 8
using population moments, with small sample results in Tables 3–6) and to the
bivariate SVARs. Thus, the pronounced sensitivity to the transformation of hours
evident in the bivariate SVARs derived from the RBC model appears excep-
tional among the cases we consider; and to the extent we do see some sensitivity,
there is no clear pattern of bias in the hours worked variable (e.g., in the sticky
price/wage model, differencing hours implies upward bias in the hours response
for both the two- and four-variable SVAR specifications, in sharp contrast with
the RBC model, where hours is downward biased in the bivariate specification).
To the extent that empirical results appear noticeably more sensitive to the trans-
formation of hours, this may reflect other factors not captured in either of our
models, e.g., demographic shifts or other shocks to labor force participation.36

We also find that the sticky price/wage model is somewhat less sensitive to
the inclusion of the additional shocks than the RBC model.37 Using the pop-
ulation moments of the sticky price/wage model with these additional shocks,
the four-variable SVAR with four lags displays a deterioration (not shown) in its
ability to approximate the true dynamics; however, this deterioration is less pro-
nounced than in the RBC model. Similarly to the RBC model, there is no evident
deterioration in small sample performance in this case (see Tables 3–6).

35. This is evident from analyzing the numerical state-space solution for the log-linearized model.
36. See Francis and Ramey (2004), who showed that the standard measure of hours per capita used
in the empirical literature is significantly affected by low frequency demographic and institutional
trends, which are not accounted for in most business cycle models. They constructed a revised
measure of hours per capita, which they argue is better suited to these theoretical models, and using
bivariate SVARs showed that a positive technology shock leads to a fall in hours irrespective of
whether hours per capita are specified in levels or differences.
37. We calibrated these two additional shocks following the same approach discussed above for
the RBC model. Thus, the innovation variance of the stationary technology shock accounts for 50%
of the variation in the growth rate of the Solow residual (see Tables 1 and 2 for details).
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Taking stock of our sensitivity analysis across the two models, our results
suggest that specification choice should be suited to the particular use or inter-
pretation to be attached to the results, and to the researcher’s beliefs about the
plausibility of alternative models. Thus, a researcher exclusively interested in esti-
mating the effects of technology shocks who had high confidence in the model
with nominal rigidities might find it desirable to use a bivariate VAR specification
with hours in differences, even if this specification performed relatively poorly in
the RBC model. By contrast, a researcher interested in evaluating the plausibility
of alternative models would presumably want to adopt a SVAR specification that
performed well enough across models to help differentiate between them. As one
might conjecture and as we verify below, the four-variable SVAR would appear
to offer a useful basis for discriminating between the implications of the two
benchmark models we have examined.

5.4. Discriminating Between Models Based on the Response of Hours

A key objective of Galí’s (1999) seminal paper applying the SVAR approach to
technology shocks was to differentiate between alternative business cycle mod-
els. In this vein, Galí interpreted his result that hours worked fell in response to
a technology shock as contravening the RBC paradigm, and suggested that his
findings might be more consistent with a model that incorporated nominal rigidi-
ties. Galí’s provocative conclusion generated considerable subsequent empirical
research examining the robustness of inferences drawn from SVARs to changes in
data and specification. This research has included papers by Francis and Ramey
(2003) and Galí and Rabanal (2005), that broadly lent support to Galí’s original
conclusion, while Christiano, Eichenbaum, and Vigfusson (2003) favored a VAR
specification that implies a rise in hours worked following a technology shock.
But notwithstanding the lively debate that has emerged about specification issues,
these papers share the common thread that they regard the SVAR approach as a
useful methodological approach in helping to discriminate between alternative
business cycle models.

The recent paper by Chari, Kehoe, and McGrattan (2005) diverges from this
literature in its complete rejection of the use of the SVAR approach to evaluate
the plausibility of alternative models. As noted previously, these authors (hence
CKM) concluded based on the performance of bivariate SVARs estimated using
artificial data from an RBC model that inferences from the SVAR approach are
likely to be uninformative or misleading.

We are certainly sympathetic with CKM’s specific point that the SVAR
methodology may perform poorly even if the data-generating process satisfies
Galí’s headline identifying assumptions. Complementary to our own analysis,
the CKM results should provide strong caution against interpreting the results of
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SVARs in a model-independent fashion: inferences about technology shocks, and
tests of alternative models using the SVAR approach, are invariably more model-
specific than has been recognized in the literature. As applied to the literature,
we concur with CKM that at least some of the evidence brought to bear against
the RBC model, such as that derived from a two-variable SVAR with hours in
differences, probably can be dismissed.

But do we agree with CKM that the SVAR methodology is completely ill-
suited to discriminating between alternative models of the business cycle? Our
answer is an emphatic “no.” To the contrary, we interpret our results as suggesting
that the SVAR approach may indeed be a useful tool in this regard, provided that
the models have sufficiently divergent implications about the effects of technology
shocks, and that the SVAR performs reasonably well in each model.

We illustrate this by assessing the ability of the SVAR to discriminate between
our two benchmark models based on the response of hours worked. We use a
four-variable SVAR with hours in levels, since we have shown that it performs
reasonably well in both the RBC model, and in the model with nominal rigidities.
The upper panel of Figure 10 shows the probabilities that the estimated response
of hours is uniformly negative in the first two and four quarters, respectively.
The probability of finding an initial decline in hours that persists for two quarters
is 93% in the model with nominal rigidities, but only 26% in the RBC model.
Accordingly, a researcher who found that hours worked declined after a positive
innovation in technology in the data could reasonably interpret this finding as
providing some evidence in favor of the sticky price/wage model. By contrast,
a researcher who found that hours worked rose after a technology shock could
regard this finding as offering evidence in support of the RBC model: as shown
in the lower panel, the probability of finding an initial rise in hours that persists
for two quarters is 71% in the RBC model, but less than 1% in the sticky price/
wage model.

Interestingly, fairly similar results obtain for a two-variable VAR specification
in which hours is specified in levels. For example, for this specification we find that
the probability of finding an initial decline in hours that persists for two quarters
is 87% in the model with nominal rigidities, but only 23% in the RBC model.
Ironically, while there is admittedly some upward bias in the two-variable SVAR
when applied to the RBC model—a feature which CKM highlight in pejorative
terms—such bias may actually facilitate differentiating between models. This is
because the bias induces a larger wedge between the implications of these models
for hours worked, making it less probable that an observed decline in hours would
be consistent with the RBC model.

Several recent papers have in fact examined the implications of bivariate
SVARs with hours in levels, including Galí (2004), Francis and Ramey (2004),
and Christiano, Eichenbaum, and Vigfusson (2003). The empirical results appear
quite sensitive to measurement of the hours worked variable, with no consensus on
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Figure 10. The response of hours in each of the benchmark models.∗

Note: ∗VAR results based on 10,000 samples from each model of 180 quarterly observations. Probability uniformly
negative (positive) refers to the likelihood that the estimated response of hours is negative (positive) in each of the first
two and first four quarters. Because we use uniform probabilities, the probabilities of positive and negative responses do
not necessarily sum to one.

the most appropriate measure (e.g., Galí and Rabanal and Francis and Ramey find
that hours decline for most of their measures, while Christiano, Eichenbaum, and
Vigfusson report a rise in hours for their preferred measure). While identifying
the proper empirical counterpart to the hours concept in our theoretical model
is an issue beyond the scope of the present paper, our analysis does provide a
rationale for using a SVAR with hours in levels; and it would appear to offer a
much better test of the RBC model than SVAR specifications involving hours in
differences.

From a more general perspective, our analysis suggests that the SVAR method-
ology may offer a plausible means of differentiating between alternative business-
cycle models, as envisioned in Galí’s original article and in most of the subsequent
empirical literature. However, it is important that a researcher is aware of the



“zwu005050294” — 2005/10/8 — page 1272 — #36

1272 Journal of the European Economic Association

limitations of alternative SVAR specifications in evaluating the models consid-
ered, and that he adopt a specification that is well-suited to differentiate between
the particular models of interest.

6. Conclusion

While identifying technology shocks and their effects is a difficult task, our anal-
ysis suggests that Galí’s methodology is a useful tool. We find it encouraging that
our four-variable VAR specification performs reasonably well across the RBC
and sticky price/wage models in characterizing the qualitative effects of a tech-
nology shock on a range of macro variables. But our analysis highlights that the
conditions under which the Galí methodology performs well appear considerably
more restrictive than implied by the key identifying restriction. Accordingly, it
will be useful in future research to delineate further the class of models for which
this methodology works well, and also to examine empirically realistic conditions
that might exacerbate some of the problems we have identified in our analysis
(e.g., stationary technology shocks). Moreover, it will be beneficial to identify
VAR specifications that appear to be robust across a class of plausible models,
insofar as this would enhance the latitude to use this methodology to discrimi-
nate across models. From a broader perspective, it would be desirable to evaluate
the performance of the Galí methodology relative to other approaches, includ-
ing maximum likelihood estimation of a fully-specified structural model; while
our results indicate that the performance of the former is also model-dependent,
it remains an important empirical question whether it is more robust to model
uncertainty than competing methods.

Appendix

This appendix is divided into three sections. In the first, we show results for
the SVAR with different sample lengths and different fixed lag lengths. In the
second, we discuss how the log-linear solution of our RBC model can be written
as a VARMA(4,5). Finally, we describe the decomposition of the sources of error
in the SVAR impulse responses.

A.1. Results for Different Sample Lengths and Fixed Lag Lengths

Table A.1 documents the performance of the SVAR using different sample lengths
of data generated under the benchmark RBC calibration. In practice, researchers
might be limited to samples shorter than 180 quarterly observations, or might
choose to work with a smaller sample due to structural breaks. In the row labelled
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Table A.1. Varying the sample size for the benchmark RBC calibration: Uniform
probability that estimated response is far from true response over first four quarters.a

Labor
Number of quarters productivity Output Hours Consumption Investment

120 (10 years less) 0.63 0.43 0.23 0.51 0.38
180 (benchmark length) 0.44 0.25 0.23 0.27 0.28
260 (20 years more) 0.32 0.16 0.22 0.18 0.24
400 (100 years) 0.22 0.11 0.22 0.11 0.22

1000 (250 years) 0.05 0.03 0.20 0.04 0.12
aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or below the true
response for the first four quarters. For hours worked, the probability that the sign of the estimated response is incorrect
in each of the first four quarters.

“120”, which corresponds to 30 years of quarterly data, we report the probabilities
of large misses over the first four quarters following the shock. Not surprisingly,
our results suggest that the problems documented so far are compounded by
reducing the length of the estimation sample.

We investigated how large a sample we would need to ameliorate the small-
sample problems documented so far. Table A.1 shows that even with 100 years of
data there would still be a sizeable chance of making large errors. For instance, the
probability that the response of labor productivity would be estimated uniformly
outside a 33% band around the true response remains as high as 19%. Only
when the estimation sample includes 1000 quarterly observations do most of the
probabilities of large misses drop below 10%. An exception is hours worked.
This reflects that the model’s response is close to zero, and we use an alternative
criterion that gives the probability of a uniformly negative response. However,
the probability of a negative response for hours diminishes when we increase the
number of observations further, as might be expected from our estimates using
population moments.

Table A.2 investigates how the performance of the SVAR depends on the
number of lags included; thus, rather than using the Schwarz criterion to determine
the lag length for each Monte Carlo draw, in these experiments we simply fix
the lag length at a constant value p (we use a sample length of 180 quarterly
observations). The table reports the probabilities of large errors over the first four
quarters for different lag lengths. There is some modest improvement in the fit of
the SVAR for smaller values of p. Still, the probability of a large miss for labor
productivity is above 40%, and there is over a 20% chance of concluding that
hours worked fall when in truth it rises.

A.2. Writing the RBC Model as a VARMA(4,5)

We first obtain a log-linear solution of the RBC model around its nonstochas-
tic steady state. This allows us to express the log-linear decision rule for the
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Table A.2. Varying the VAR lag structure for the benchmark RBC model: Probability that
estimated response is uniformly far from true response over first four quarters.a

Labor
Experiment productivity Output Hours Consumption Investment

Lag length = 2 0.40 0.19 0.21 0.21 0.26
Lag length = 3 0.40 0.20 0.21 0.22 0.26
Lag length = 4 0.41 0.22 0.21 0.24 0.26
Lag length = 5 0.42 0.23 0.22 0.26 0.26
Lag length = 6 0.44 0.25 0.22 0.28 0.27
Lag length = 9 0.49 0.32 0.23 0.35 0.31
Lag length = 10 0.51 0.34 0.24 0.38 0.32
BIC 0.44 0.25 0.23 0.27 0.28
aFor all variables except hours worked, the probability that the estimated response lies at least 33% above or below the true
response for the first four quarters. For hours worked, the probability that the sign of the estimated response is incorrect
in each of the first four quarters.

economy’s scaled capital stock, k̂t+1 = Kt+1/Zt , as a function of lagged capital,
k̂t , and a vector of the four exogenous shocks, St = (µ̃zt , τ̃Nt , g̃t , χ̃0t )

′ in the
benchmark calibration, (where the tilde denotes that the variable is expressed in
log deviation from its steady state value). Also, for convenience, we have defined
µzt = log(Zt ) − log(Zt−1) and rewritten equation (6) more generally as

µzt = (1 − ρz)µz + ρzµzt−1 + σzεzt , (A.1)

even though ρz = 0.
The log-linear decision rule for the scaled capital stock can then be expressed

as:
k̃t+1 = akkk̃t + bksSt , (A.2)

where akk is a scalar and bks is a 4 × 1 vector of coefficients. We can also write
hours worked, the consumption-to-output ratio, and investment-to-output ratio as
a function of k̃t and St , while the growth rate of labor productivity is a function
of k̃t , k̃t−1, St , and St−1. Therefore, the model’s dynamics for Xt , the vector
containing the variables in our VAR, can be expressed as:

X̃t = C1k̃t + C2k̃t−1 + D1St + D2St−1, (A.3)

where C1 and C2 are 4 × 1 vectors and D1 and D2 are 4 × 4 matrices.
Using the log-linear decision rule for kt+1 to substitute the scaled capital

stock out of the linear decision rules for labor productivity growth, hours, and
the ratios of consumption and investment to output, we can express the linear
dynamics of Xt as

Xt = akkXt−1 + (B0 + B1L + B2L
2)St (A.4)

St = ρSt−1 + σεt

where B0 = D1, B1 = C1Bks − akkD1 + D2, and B2 = C2Bks − akkD2; ρ

and σ are diagonal 4 × 4 matrices whose respective elements contain the AR(1)
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coefficients and standard deviations of the innovations. Finally, εt = (εzt , ετN ,t ,

εχt , εgt )
′.

It is convenient to rewrite the first equation in (A.4) as:

(I − akkL)Xt =
4∑

j=1

(B0,c(j) + B1,c(j)L + B2,c(j)L
2)Sjt , (A.5)

where B0,c(j) denotes the j th column of B0, and Sjt is the j th shock in St .
Because ρ and σ are diagonal matrices, we denote the j th element along the
diagonal of these matrices as ρj and σj , respectively. Using these diagonal matri-
ces, we can substitute out St from equation (A.5) to write

4∏
i=2

(1 − ρiL)(I − akkL)Xt

=
4∏

i=2,i �=j

4∑
j=1

(1 − ρi)
(
B0,c(j) + B1,c(j)L + B2,c(j)L

2)εjt ,

or
a(L)Xt = b(L)εt , (A.6)

with a(L) = ∑4
i=0 aiL

i and b(L) = ∑5
i=0 biL

i . In the above, a0 = I4 and ai for
i = 1, 2, 3, 4 are 4 × 4 matrices that depend on akk and ρj for j = 2, 3, 4. Also,
b0 = B0 and bi for i = 1, 2, 3, 4, 5 are 4×4 matrices that depend on the elements
of B0, B1, and B2 and ρj for j = 2, 3, 4. Note that a(L) and b(L) do not depend
on ρ1 since ρz = ρ1 = 0.

Lippi and Reichlin (1993) make the point that researchers fitting a VAR to
the data would not be able to recover the underlying shocks, if the data-generating
process had a nonfundamental representation. Therefore, for our benchmark cal-
ibrations, we checked that our model implied a fundamental representation by
verifying numerically that the polynomial det(b0 + b1z + · · · + b5z

5) has all
roots strictly outside the unit circle. This condition ensures that the VARMA pro-
cess in equation (A.6) is invertible and is a fundamental representation for Xt (see
p. 222 and p. 456 of Lutkepohl 1991).

A.3. Error Decomposition

In this section, we decompose the error in estimating the response to a technol-
ogy shock for a given Monte Carlo draw into two sources. The first source arises
because the VAR we estimate is an imperfect approximation of the VARMA
process implied by our models. The second source is due to small-sample impre-
cision.
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For a given Monte Carlo draw, let d̂l,i denote the estimated impulse response
for ith variable, at lag l for a particular; let d∗

l,i denote the impulse response from
the true model, and let dl,i be the estimate of the SVAR’s impulse response using
the model’s population moments.38 Accordingly, d̂l,i − d∗

l,i is the error in the
estimate of the response to a technology shock for ith variable at lag l. We can
rewrite this error as:

d̂l,i − d∗
l,i = (dl,i − d∗

l,i ) + (d̂l,i − dl,i). (A.7)

The first source of error (dl,i − d∗
l,i) due to approximating a VARMA process

with a VAR. The second source of error (d̂l,i − dl,i) arises in all time series work
because of limited sample size.

We now proceed to decompose the small-sample error into two parts: one
arising from estimating the reduced form and another from transforming the
reduced form to structural. Using the notation from equation (19), we begin by
noting that

d̂l,i = R̂l,r(i)α̂, (A.8)

where α̂ denotes the finite-sample estimate of the first column of A0, R̂l is the
finite-sample estimate of Rl , and the subscript r(i) denotes the ith row of this
matrix. The term α̂ maps the reduced-form impulse responses into structural ones.
It is important to recognize that α̂ is implicitly a function of R̂(1) through equation
(16), where R̂(1) determines the long-run response of the variables in the VAR
to unidentified innovations.39 As discussed in Faust and Leeper (1997) small
imprecision in estimating A(L), the reduced-form VAR parameters, can result
in large errors in R̂(1), and this error affects all the identified impulse responses
through α̂.

We decompose the small sample error of estimating the impulse response of
variable i at lag l as

d̂l,i − dl,i = (R̂l,r(i) − Rl,r(i))α̃ + R̃l,r(i)(α̂ − α), (A.9)

where the matrices, α̃ = 1/2(α̂ + α) and R̃l,r(i) = 1/2(R̂l,r(i) + Rl,r(i)) are
defined to lie halfway between the finite-sample estimates and the population esti-
mates of the SVAR.40 Equation (A.9) shows the two parts of our decomposition:

38. We compute dl,i by using the log-linear solution of the DGE model to find the population
estimates of Aj , j = 1, 2, . . . , p, in equation (14) and use those estimates along with equation (16)
to determine A0.
39. We define α̂ = α(R̂(1), �̂) where R̂(1) and �̂ are the VAR’s estimates of R(1) and of the
reduced form variance–covariance matrix �, respectively. Our decomposition does not parse out the
error from estimating the variance–covariance matrix from estimating R(1). However, for both of
the benchmark models, we checked that the error from having to estimate α(R(1), �̂) was small and
most of the error was due to estimating α(R̂(1), �).
40. We thank Jon Faust for suggesting this decomposition of the small-sample error.
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the first emphasizes the error in estimating the reduced-form moving average
term, Rl,r(i), and the second emphasizes the error in estimating R(1) through the
α term. Finally, we compute the R and A biases reported in Figures 1 and 7 by
averaging these two parts of the small-sample error over the 10,000 Monte Carlo
replications.
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